
Question 1

Loop table

Give the function below:

def even_up_nested(lists):

for i in range(len(lists)):

for j in range(len(lists[i])):

lists[i][j] += lists[i][j] % 2

return lists

Complete the loop table below with the corresponding values of i, j, lists[i][j] % 2 and lists for the
following function call:

even_up_nested([[0, 2, 1, 3], [3, 2], [0, 1]])

RESPONSE FOR QUESTION 1:

i j lists[i][j] % 2 lists

0 0 0 [[0, 2, 1, 3], [3, 2], [0, 1]]

0 1 0 [[0, 2, 1, 3], [3, 2], [0, 1]]

0 2 1 [[0, 2, 2, 3], [3, 2], [0, 1]]

0 3 1 [[0, 2, 2, 4], [3, 2], [0, 1]]

1 0 1 [[0, 2, 2, 4], [4, 2], [0, 1]]

1 1 0 [[0, 2, 2, 4], [4, 2], [0, 1]]

2 0 0 [[0, 2, 2, 4], [4, 2], [0, 1]]

2 1 1 [[0, 2, 2, 4], [4, 2], [0, 2]]

2

Question 2

Evaluate the code below. Enter in each box what the last line of code in each chunk prints. When the code
throws an error, write ERROR in the response box.

2A
numbers = []

numbers.append(10)

numbers.append(1)

numbers.insert(1, 0)

print(numbers)

RESPONSE 2A:
[10, 0, 1]

2B
numbers = [1, 5]

numbers.insert(0, 3)

numbers[2] = 100

print(numbers)

RESPONSE 2B:
[3, 1, 100]

2C
numbers = [1, 2]

print(numbers[2])

RESPONSE 2C:
ERROR

2D
numbers = {1, 2, 3, 1, 2}

print(numbers)

RESPONSE 2D:
{1, 2, 3}

2E
numbers = {1}

numbers.add(2)

numbers.add(2)

print(numbers)

RESPONSE 2E:
{1, 2}

3

Question 3a – Selection Sort

def find_min_index(items):

min_index = None

for i in range(len(items)):

if min_index == None or items[min_index] > items[i]:

min_index = i

return min_index

def selection_sort(items):

begin_index = 0

while begin_index < len(items)-1:

min_index = find_min_index(items[begin_index:]) + begin_index

items[begin_index], items[min_index] = items[min_index], items[begin_index]

begin_index += 1

return items

Using selection sort (code for reference above), how many sweeps and swaps would it take until the list gets
sorted? Show your work. Indicate the number of sweeps and swaps in their designated boxes.

[10, 4, 2, 10, 5, 7]

SHOW YOUR WORK FOR QUESTION 3:
[10, 4, 2, 10, 5, 7] sweep
[2, 4, 10, 10, 5, 7] swap + sweep
[2, 4, 10, 10, 5, 7] sweep
[2, 4, 5, 10, 10, 7] swap + sweep
[2, 4, 5, 7, 10, 10] swap + sweep

SWEEPS: 5

SWAPS: 3

4

Question 3b – Bubble Sort

def bubble_sort(items):

swapped = False

end = len(items)-1

while not swapped:

swapped = True

for i in range(end):

if items[i] > items[i+1]:

items[i], items[i+1] = items[i+1], items[i]

swapped = False

end -= 1

Using bubble sort (code for reference above), how many sweeps and swaps would it take until the list gets
sorted? Show your work. Indicate the number of sweeps and swaps in their designated boxes.
[10, 4, 2, 10, 5, 7]

SHOW YOUR WORK FOR QUESTION 3:

first sweep: [10, 4, 2, 10, 5, 7]

[4, 10, 2, 10, 5, 7] swap

[4, 2, 10, 10, 5, 7] swap

[4, 2, 10, 5, 10, 7] swap

[4, 2, 10, 5, 7, 10] swap

second sweep: [4, 2, 10, 5, 7, 10]

[2, 4, 10, 5, 7, 10] swap

[2, 4, 5, 10, 7, 10] swap

[2, 4, 5, 7, 10, 10] swap

third sweep: [2, 4, 5, 7, 10, 10]

SWEEPS: 3

SWAPS: 7

5

Question 4

Write a Python function called trim_ends that has a 2D list as parameter. The function should mutate and
return the argument list, removing the first and last element of each sublist (if the sublist is not empty).

Test case:

numbers = [[10, 20, 200, 40],

[], [10],

[1000, 1000, 10],

[20, 30, 4, 100]]

trim_ends(numbers)

assert numbers == [[20, 200], [], [], [1000], [30, 4]]

def trim_ends(lists):

for sublist in lists:

if len(sublist) > 0:

sublist.pop(0)

if len(sublist) > 0:

sublist.pop(-1)

6

Question 5

Write a python function that does the following:

1. Its name is create_list

2. It takes two arguments, a set of strings and an integer n

3. It returns a list that contains each string from the set repeated n times

items = {"banana", "apple", "pear"}

assert create_list(items, 2) == ['banana', 'banana', 'apple', 'apple', 'pear', 'pear']

solution 1
def create_list(items, n):

new_list = []

for value in items:

for i in range(n):

new_list.append(value)

return new_list

solution 2
def create_list(items, n):

new_list = []

for value in items:

new_list.extend([value] * n)

return new_list

7

Question 6

See the python code and the contents of the file name data.txt. The python code writes content to a file
named result.txt. You must determine what the contents of result.txt will be after the code runs. Put
your answer in the response box.

data.txt

one silver edging

trees leaves are green

this simple request is finally

a moody final countdown

def is_acceptable(x):

for i in range(0, len(x)-1):

if x[i] == x[i+1] and x[i] in "aeiou":

return True

return False

def main():

data = open('data.txt', 'r')

result = open('result.txt', 'w')

for line in data:

words = line.strip('\n').split(' ')

for word in words:

z = is_acceptable(word)

if z:

result.write(word + '\n')

data.close()

result.close()

main()

RESPONSE FOR QUESTION 5:
trees
green
moody

8

Question 7

Write a function called star_consonants that has one string as parameter. The function returns a new
string of the same length as the parameter string, with every consonant replaced by an asterisk ("*").

assert star_consonants("banana") == "*a*a*a"

assert star_consonants("a") == "a"

assert star_consonants("apple") == "a***e"

assert star_consonants("") == ""

def star_consonants(string):

new_string = ""

for char in string:

if char.lower() not in "aeiou":

new_string += "*"

else:

new_string += char

return new_string

Question 8

Write a function called total that has one parameter named file_name, being the name of a file to read.
The function expects that the file to read has one or more integer numbers on it per line. It iterates over
the lines and numbers to compute the total of all the numbers from the file. It returns the total.

Example of data.txt file

5 10 2

1 0

5 1

20

assert total("data.txt") == 44

def total(file_name):

total = 0

f = open(file_name, "r")

for line in f:

numbers = line.strip().split()

for n in numbers:

total += int(n)

return total

9

Question 9

Write a function that does the following:

1. Its name is average_rows

2. It has one parameter named lists, being a 2D list of float numbers
3. For each list (row) within the 2D list, it should calculate the average of the numbers within, round it

at two decimals, and place the resulting average in a new list at the same index
4. It returns the list of the averages

assert average_rows([[1.2, 5.4, 4.3, 2.0], [0.0, 1.0]]) == [3.23, 0.5]

assert average_rows([[], [10.5]]) == [None, 10.5]

assert average_rows([[1.0], [2.5, 3.5, 4.5], [0.0, 0.0], [0.0, 2.0]]) == [1, 3.5, 0.0, 1.0]

def average_rows(lists):

averages = []

for row in lists:

if len(row) > 0:

total = 0

for number in row:

total += number

this_row_average = round(total/len(row), 2)

averages.append(this_row_average)

else:

averages.append(None)

return averages

10

Question 10

Write a function called mutate_dict that takes two arguments: a dictionary with string keys and integer
values, and a set of strings. The function mutates and returns the dictionary argument adding the strings
in the set as keys in the dictionary:

1. if the key already exists in the dictionary, do not change anything
2. if the key does not exist in the dictionary, create with with the value zero associated with it

test_dictionary = {"z": 1, "x": 2, "r": 20}

mutate_dict(test_dictionary, {"a", "z", "r", "b"})

assert test_dictionary == {"z": 1, "x": 2, "r": 20, "a": 0, "b": 0}

def mutate_dict(dictionary, string_set):

for key in string_set:

if key not in dictionary:

dictionary[key] = 0

return dictionary

11

Question 11

Write a Python function called remove_vowel_ending that takes a list of strings as argument (you can
assume strings are never empty). The function should remove list items that end in a vowel (check for upper
or lower case).

test_list = ["Peter", "Bob", "Ana", "MARIO", "CEDRIC"]

remove_vowel_ending(test_list)

assert test_list == ["Peter", "Bob", "CEDRIC"]

assert remove_vowel_ending([]) == []

def remove_vowel_ending(strings):

for i in range(len(strings)-1, -1, -1):

if strings[i][-1].lower() in "aeiou":

strings.pop(i)

return strings

12

Question 12

Write a Python function called remove_vowels that takes a list of strings as argument The function should
mutate and return the argument list, removing the vowels of each item in the list.

test_list = ["Peter", "Bob", "Ana", "MARIO", "CEDRIC"]

remove_vowels(test_list)

assert test_list == ["Ptr", "Bb", "n", "MR", "CDRC"]

assert remove_vowels([]) == []

def remove_vowels(strings):

for i in range(len(strings)):

new_string = ""

for char in strings[i]:

if char.lower() not in "aeiou":

new_string += char

strings[i] = new_string

return strings

13

Question 13

Write a python function that takes a list of integers representing years, and evaluates whether each year (for
example, 2024) is a leap year or a regular year. The function should return a dictionary with the results.

Leap years are:

• divisible by 4 and not divisible by 100
• divisible by 100 and also divisible by 400

All other cases are regular year.

Test cases (your leap_year function definition should work with these function calls):

years = [1992, 2000, 1900, 1700, 2024]

result = leap_year(years)

assert result == {1992: 'Leap Year',

2000: 'Leap Year',

1900: 'Regular Year',

1700: 'Regular Year',

2024: 'Leap Year'}

def is_leap_year(y):

if y % 4 == 0 and y % 100 != 0:

return "Leap Year"

elif y % 400 == 0:

return "Leap Year"

return "Regular Year"

def leap_year(years):

result = {}

for y in years:

result[y] = is_leap_year(y)

return result

14

Question 14

Write python code that given a list of years, it mutates the list by removing the leap years. All your code
should be in functions.

def is_leap_year(y):

if y % 4 == 0 and y % 100 != 0:

return "Leap Year"

elif y % 400 == 0:

return "Leap Year"

return "Regular Year"

def remove_leap_year(years):

for i in range(len(years)-1, -1, -1):

if is_leap_year(years[i]):

years.pop(i)

return years

15

