

CSC380: Principles of Data Science

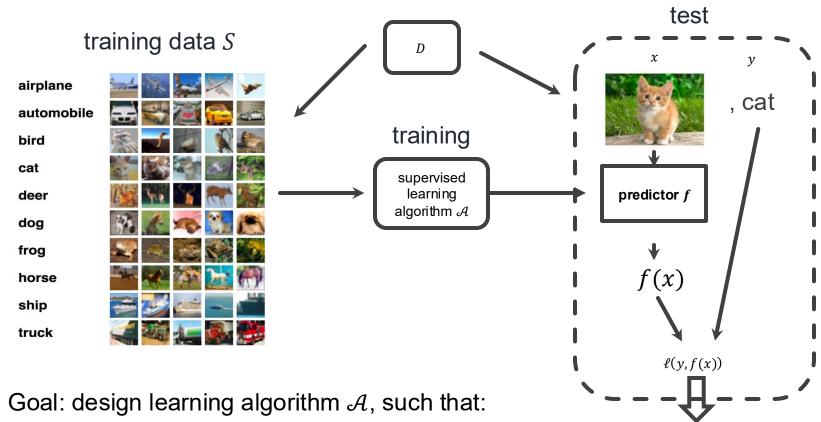
Basic machine learning 2

Xinchen Yu

- Classification basics
- Nearest neighbor Classification
- Logistic regression
- Classification: other considerations
 - Binary classification beyond accuracy
 - Multiclass classification

Classification recap

Supervised learning setup in one figure



after training, its output predictor f has low test error

Test error: average of $\ell(y, f(x))$ in test set

Classification

- The labels are categorical
- Loss function ℓ: measures the quality of prediction ŷ respect to true label y
 - $\ell(y, \hat{y}) = I(y \neq \hat{y})$
 - I: indicator of predicate; 1 if true; 0 if false
- A classifier f's error on a dataset S is the fraction of examples in S that it predicts incorrectly.
 - f's training / test error is its error on training / test set
 - Accuracy = 1 error

In-class activity: finding test error

A company develops a simple **spam classifier** f that predicts whether an email is **spam (1)** or **not spam (0)** based on the number of capital letters in the subject line.

f outputs **Spam** if the number of capital letters ≥ 5, and **Not Spam** otherwise.

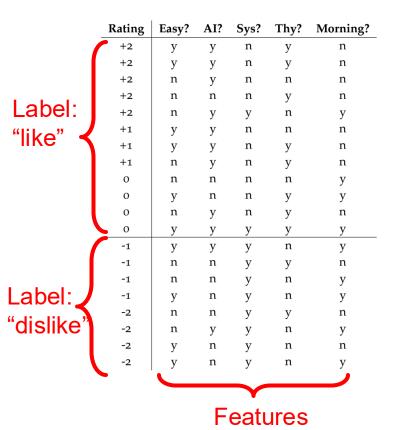
Suppose the test dataset is as follows. Find *f* 's test error.

Subject	True label	Predicted label
"WIN A FREE VACATION NOW!!!"	1	1
Meeting rescheduled to 3 PM	0	0
"HUGE DISCOUNT ON ALL ITEMS!!!"	1	1
URGENT: Please submit your report	0	1
Can you review this document?	0	0

$$f$$
's test error = $1/5 = 20\%$

Nearest Neighbor Classification

Example: Course Recommendation



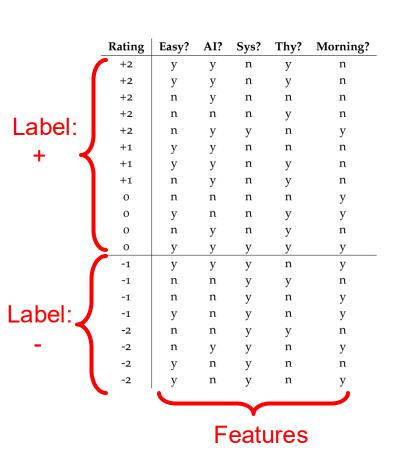
Suppose we'd like to build a recommendation system for classes

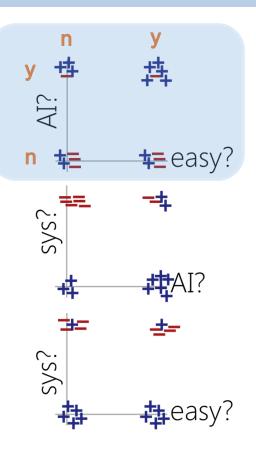
We've collected information about many past classes

We can frame this as a classification problem:

Predict like/dislike from class features

Example: Course Recommendation





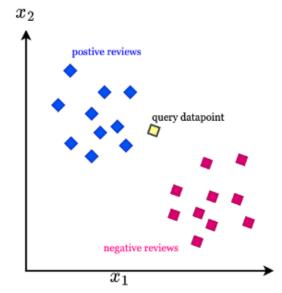
Each course's feature is Represented as points in 5-dimensional space

That's too many dimensions to plot...so we look at 2D projections...

Observation: examples with same labels tend to be closer!

Nearest neighbor classification

- Given a new course, would like to predict its label (+/-)
- Idea: Find its most similar course in the training set, and use that course's label to predict

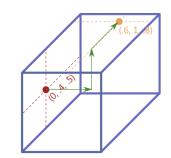


Measuring nearest neighbors

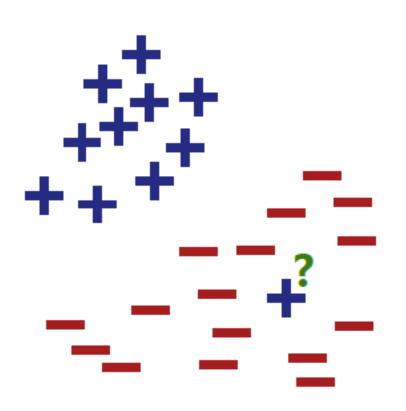
- Oftentimes convenient to work with feature $x \in \mathbb{R}^d$
- Distances in R^d :

notation
$$x(f)$$
: $x = (x(1), ..., x(d))$

- (popular) Euclidean distance $d_2(x, x') = \sqrt{\sum_{f=1}^d (x(f) x'(f))^2}$
- Manhattan distance $d_1(x, x') = \sum_{f=1}^{d} |x(f) x'(f)|$
- How to extract features as <u>real values</u>?
 - Boolean features: {Y, N} -> {0,1}
 - Categorical features: {Red, Blue, Green, Black}
 - Convert to {1, 2, 3, 4}?
 - Better one-hot encoding: (1,0,0,0), .., (0,0,0,1)
 (IsRed?/isGreen?/isBlue?/IsBlack?)



Robustify Nearest Neighbor Classification



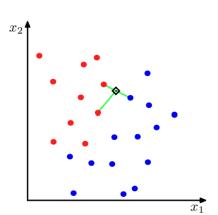
Q: Can we predict using 1 nearest neighbor's?

Query point ? Will be classified as + but should be -

Problem: predicting using 1 nearest neighbor's label can be sensitive to noisy data

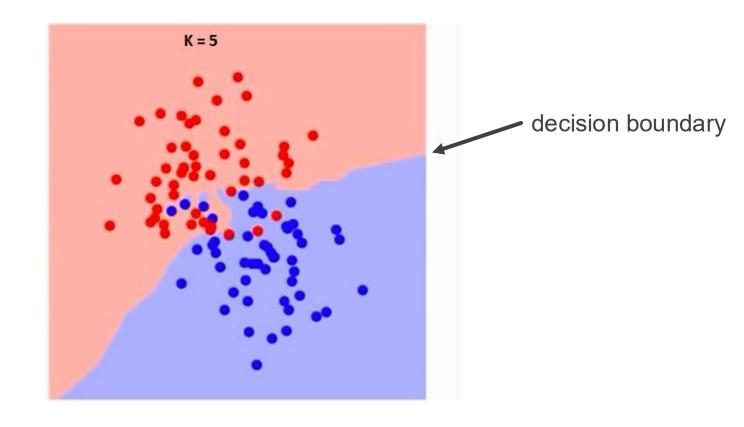
How to mitigate this?

- Training set: $S = \{ (x_1, y_1), ..., (x_m, y_m) \}$
- **Key insight**: given test example x, its label should resemble the labels of *nearby points*



- Function
 - input: *x*
 - find the k nearest points to x from S; call their indices N(x)
 - output:
 - (classification) the majority vote of $\{y_i : i \in N(x)\}$
 - (regression) the average of $\{y_i : i \in N(x)\}$

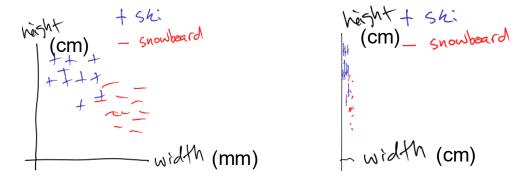
k-NN classification example



Issue 1: scaling

- Features having different scales can be problematic.
- Ex: ski vs. snowboard classification

$$d = \sqrt{(height_1 - height_2)^2 + (weight_1 - weight_2)^2}$$



One solution: feature standardization

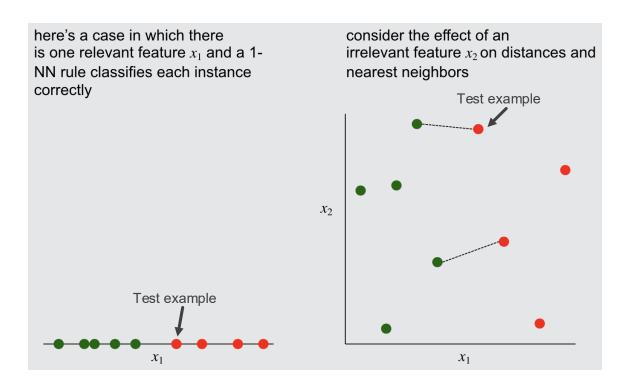
Make sure features are scaled fairly

- Features having different scale can be problematic
- [Definition] Standardization
 - For each feature f, compute $\mu_f = \frac{1}{m} \sum_{i=1}^m x_f^{(i)}$, $\sigma_f = \sqrt{\frac{1}{m} \sum_{i=1}^m \left(x_f^{(i)} \mu_f \right)^2}$
 - Then, transform the data by $\forall f \in \{1, ..., d\}, \forall i \in \{1, ..., m\}, \ x_f^{(i)} \leftarrow \frac{x_f^{(i)} \mu_f}{\sigma_f}$

after transformation, each feature has mean 0 and variance 1

- Be sure to keep the "standardize" function and apply it to the test points.
 - Save $\{(\mu_f, \sigma_f)\}_{f=1}^d$
 - For test point x^* , apply $x_f^* \leftarrow \frac{x_f^* \mu_f}{\sigma_f}$, $\forall f$

Issue 2: irrelevant features

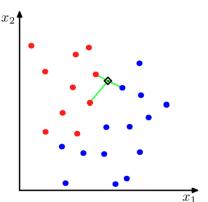


Mitigation: feature selection

Issue 3: choosing k

- Q: How would a k-NN classifier predict when k=training set size?
 - Predict majority label everywhere
 - Underfitting

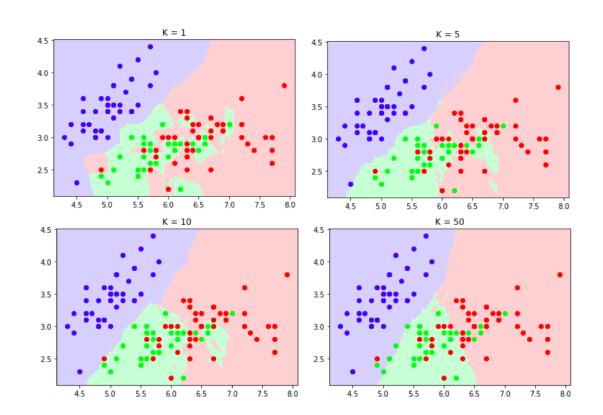
- Q: What is the training error of a 1-NN classifier?
 - 0
 - Overfitting



Issue 3: choosing k

k can be viewed as a model complexity measure

Smaller *k* results in a more complex model

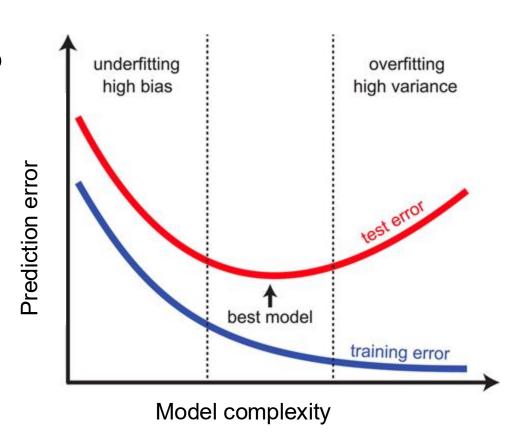


Issue 3: choosing k

We'd like to choose appropriate k to balance model bias and complexity

We can choose k in the same way we chose λ in ridge regression

Cross validation



Scikit-learn nearest neighbors

```
class sklearn.neighbors.NearestNeighbors(*, n_neighbors=5, radius=1.0,
algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None,
n_jobs=None)
[source]
```

Unsupervised learner for implementing neighbor searches.

```
# 1. Load the Iris dataset
iris = load_iris()
X = iris.data  # Features
y = iris.target  # Target labels (species)

# 2. Split the dataset into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 3. Create the KNN classifier model
knn = KNeighborsClassifier(n_neighbors=3)  # Use 3 nearest neighbors
# 4. Train the model on the training data
knn.fit(X_train, y_train)
```

Scikit-learn nearest neighbors

```
# 5. Make predictions on the test set
y_pred = knn.predict(X_test)

# 6. Evaluate the model using accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy of the KNN model: {accuracy * 100:.2f}%')

# Optionally, display the predictions vs. actual values
print(f'Predictions: {y_pred}')
print(f'Actual: {y_test}')
```

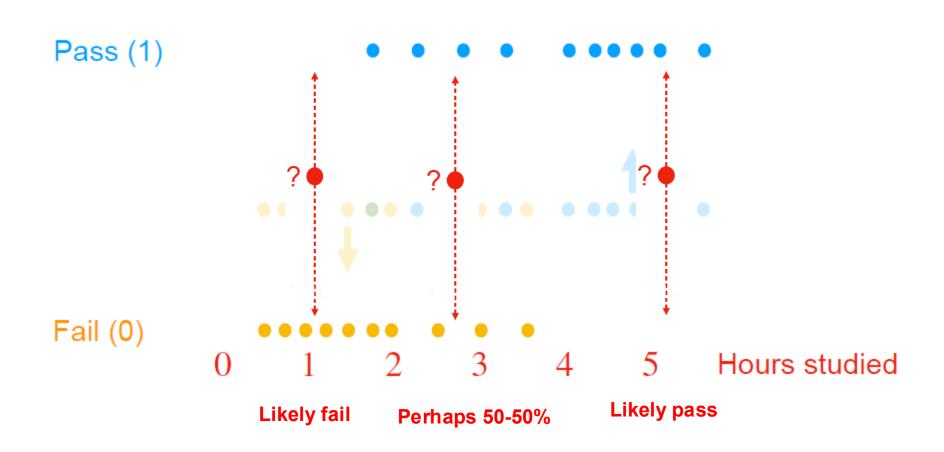
Logistic regression

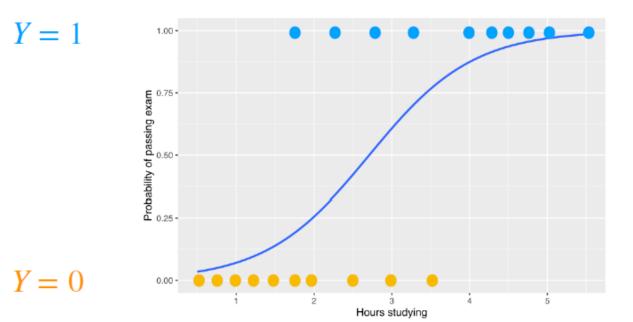
Training data: number of hours studied for the course.

Labels: Pass (1) or Fail (0)

 Can we train a model so that given a new data point, we can predict whether that student passes or fails?

- Nearest neighbor: a geometric approach for this problem
- We will now approach this using an alternative probabilistic view

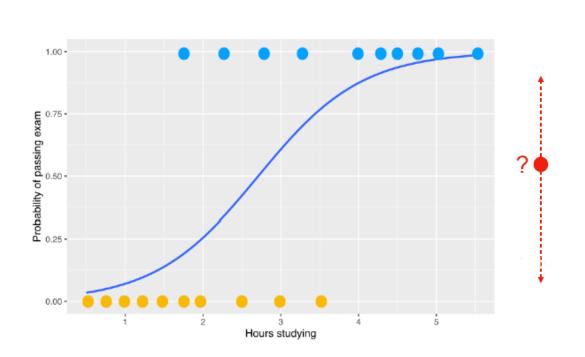




X: feature

Y: label

$$P(Y = 1 | X = x)$$



Blue curve plots:
$$P(Y = 1 | X = x)$$

We can predict the class of test point using blue curve:

If prob < 0.5 predict fail

Else predict pass

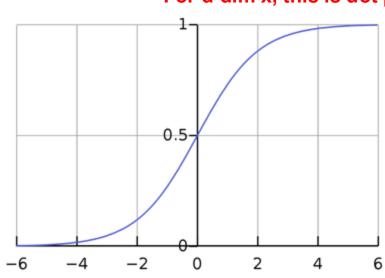
What is a reasonable form of $P(Y = 1 \mid X = x)$?

We will assume that:

$$P(Y = 1 \mid X = x) = \sigma(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

i.e., $\sigma(w \cdot x + b)$, for some w, b

$$\sigma(z)$$
: = $\frac{1}{1+e^{-z}}$ is the *logistic function*



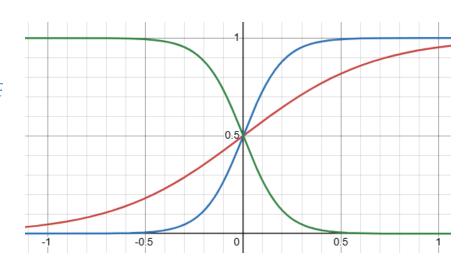
Logistic regression model

w controls the shape of the probability curve $p = \frac{1}{1 + e^{-10x}}$

$$p = \frac{1}{1 + e^{-10 \, x}}$$

$$p = \frac{1}{1 + e^{-3x}}$$

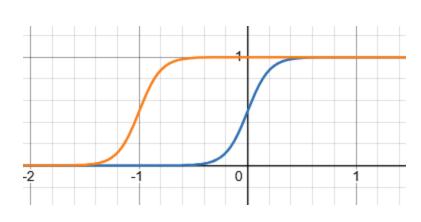
$$p = \frac{1}{1 + e^{10 \, x}}$$



b controls the location of the probability curve

$$p = \frac{1}{1 + e^{-10x}}$$

$$p = \frac{1}{1 + e^{-10(x+1)}}$$



Example Suppose we fit logistic regression model with b = 0.15 and w = 0.575. What is the model's predicted probability that a student who have studied for x = 2 hours passes?

$$P(Y = 1 \mid X = x) = \frac{1}{1 + e^{-z}}$$
, where $z = w \cdot x + b = 1$

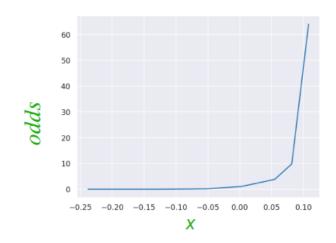
Thus, the predicted pass prob = $\frac{1}{1+e^{-1}} = 0.73$

Where does the logistic function come from?

- Linear regression $w \cdot x + b$ is good at predicting unbounded outputs y
- Idea: transform p to a good unbounded function

odd =
$$\frac{P(Y=1|x)}{P(Y=0|x)} = \frac{p}{1-p}$$

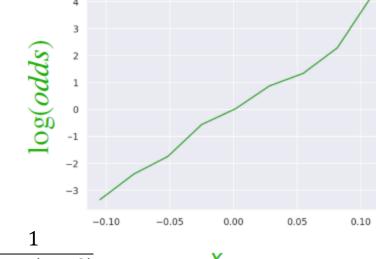
Still not ideal: odd bounded from below



Where does the logistic function come from?

Linear regression $w \cdot x + b$ is good at predicting unbounded outputs

- $\log \operatorname{odd} = \ln \frac{p}{1-p}$
- This now can take +/- values



$$\ln \frac{p}{1-p} = w \cdot x + b \qquad \Rightarrow \quad \frac{p}{1-p} = e^{w \cdot x + b} \qquad \Rightarrow \quad p = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

$$\Rightarrow p = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

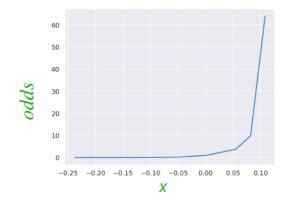
Where logistic function come from?

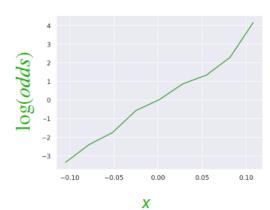
- $w \cdot x + b$ is unbounded
- We want to transform p into a form that produce unbounded outputs

$$p \rightarrow \frac{p}{1-p} \rightarrow \ln \frac{p}{1-p}$$

$$\uparrow \qquad \uparrow$$

$$[0, 1] \quad [0, +\infty] \qquad [-\infty, +\infty]$$

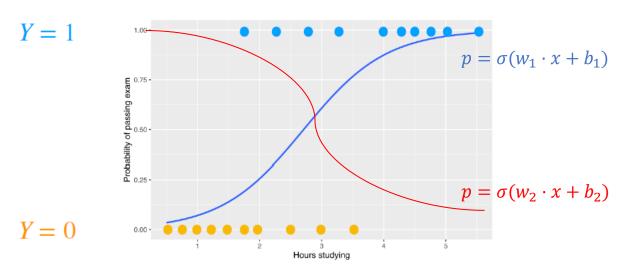




Fitting a logistic regression model

• Recall: loss for linear regression was MSE $\frac{1}{n}\sum_i(y_i-w\cdot x_i)^2$

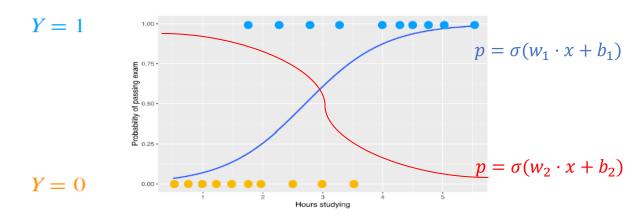
- How about logistic regression?
 - y_i 's are in 0, 1



Which logistic regression model fits data better, red or blue?

Fitting a logistic regression model

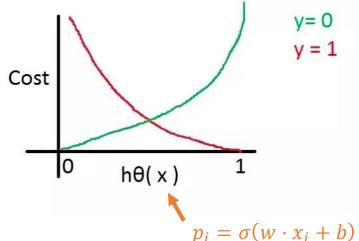
- We'd like to choose w and b such that:
- for x whose label is more likely to be 1
 - => p is large
 - $=> w \cdot x + b$ is large
 - => penalize more if *p* is small



Cross entropy loss

$$\ell(y,p) = y \ln \frac{1}{p} + (1-y) \ln \frac{1}{1-p}$$

$$= \begin{cases} \ln \frac{1}{p}, \ y = 1\\ \ln \frac{1}{1-p}, y = 0 \end{cases}$$



Minimizing CE loss incentivizes the model's predictive probability to align with labels

Fitting a logistic regression model

• We find w and b to minimize:

$$\sum_{i} \left(y_i \, \ln \frac{1}{p_i} + (1 - y_i) \, \ln \frac{1}{1 - p_i} \right), \quad \begin{array}{c} \text{Logistic loss, aka} \\ \text{Cross-entropy (CE) loss} \end{array}$$

where
$$p_i = P(Y = 1 \mid x_i) = \frac{1}{1 + e^{-(w \cdot x_i + b)}}$$

• What is the i-th example's loss when:

•
$$y_i = 1$$
 and $p_i \approx 1$?

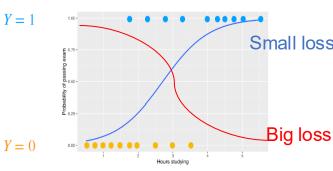
•
$$y_i = 1$$
 and $p_i \approx 0$?

•
$$y_i = 0$$
 and $p_i \approx 1$?

•
$$y_i = 0$$
 and $p_i \approx 0$?

 ≈ 0

Large



sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) 1 [source]

penalty: {'l1', 'l2', 'elasticnet', 'none'}, default='l2'

Specify the norm of the penalty:

Similar to linear regression, add regularization to combat overfitting

- 'none': no penalty is added;
 '12': add a L2 penalty term and it is the default choice;
- 12 . aud a L2 penalty term and it is the default choic
- '11': add a L1 penalty term; $\operatorname{argmin}_{w} \operatorname{Logistic} \operatorname{Loss}(w) + \lambda |w|$
- 'elasticnet': both L1 and L2 penalty terms are added.

tol: float, default=1e-4

Tolerance for stopping criteria.

C: float, default=1.0
$$C = 1/\lambda$$

Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization.

Scikit-Learn Logistic Regression

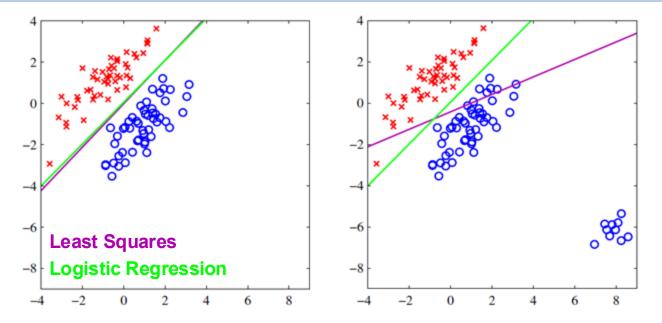
log_regression = sklearn.linear_model.LogisticRegression()

```
= log regression.fit(pd.DataFrame(x), y)
y pred = log regression.predict proba(pd.DataFrame(x))
log y pred 1 = [item[1] for item in y pred]
                                                                0.8
fig = plt.figure(figsize=(10,5))
xlabel = 'Age'
ylabel = 'Purchased'
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.grid(color='k', linestyle=':', linewidth=1)
plt.plot(x, y, 'xb')
plt.plot(x, log y pred 1, '-r')
                                                                         12.5
                                                                                                 22.5
                                                                    10.0
                                                                               15.0
                                                                                     17.5
                                                                                           20.0
                                                                                                       25.0
  = plt.plot(x, line point 5,'-g')
```

Function predict_proba(X) returns prediction of class assignment probabilities for each class. It returns n by C matrix if n data points were provided as argument.

(C=number classes)

Least Squares vs. Logistic Regression



Least squares regression may also be (ab)used for classification

- To predict a class, threshold $w \cdot x + b$ against 0.5
- Not designed for classification though -- sensitive to outliers

[Source: Bishop "PRML"]

Using Logistic Regression

Logistic Regression have two main usages

- building **predictive** classification models
- understanding how features relate to data classes / categories

Example South African Heart Disease (Hastie et al. 2001)
Data result from Coronary Risk-Factor Study in 3 rural areas of South Africa.
Data are from white men 15-64yrs. Label is presence/absence of *myocardial infarction (MI)*.

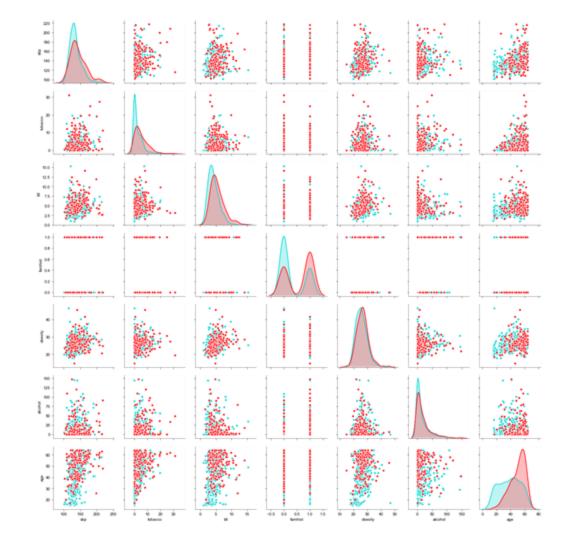
Example: African Heart Disease

	sbp	tobacco	ldl	famhist	obesity	alcohol	age	chd
0	160	12.00	5.73	1	25.30	97.20	52	1
1	144	0.01	4.41	0	28.87	2.06	63	1
2	118	0.08	3.48	1	29.14	3.81	46	0
3	170	7.50	6.41	1	31.99	24.26	58	1
4	134	13.60	3.50	1	25.99	57.34	49	1

Features

- Systolic blood pressure
- Tobacco use
- Low density lipoprotein (IdI)
- Family history (discrete)
- Obesity
- · Alcohol use
- Age

Q: How predictive is each of the features to myocardial infarction?



Looking at Data

Each scatterplot shows pair of risk factors.

Cases with MI (red) and without (cyan)

Features

- Systolic blood pressure
- Tobacco use
- Low density lipoprotein (IdI)
- Family history (discrete)
- Obesity
- · Alcohol use
- Age

[Source: Hastie et al. (2001)]

Example: African Heart Disease

	Coefficient	Std. Error	Z Score
(Intercept)	-4.130	0.964	-4.285
	0.006		
tobacco	0.080	0.026	3.034
ldl	0.185	0.057	3.219
famhist	0.939	0.225	4.178
obesity	-0.035	0.029	-1.187
alcohol	0.001	0.004	0.136
age	0.043	0.010	4.184

Z-score: score indicating the significance of each feature

|Z-score| > 2: feature is significant (we will learn more in *statistics*)

Finding Systolic blood pressure (sbp), obesity, and alcohol are not significant predictors