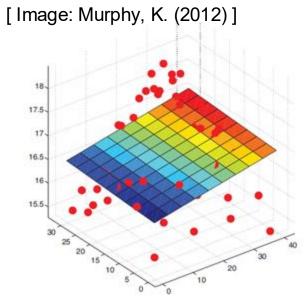


CSC380: Principles of Data Science

Nonlinear Models 1

Xinchen Yu

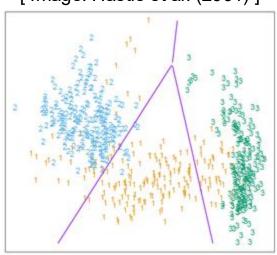
- Basis Functions
- Support Vector Machine
- Neural Networks



Linear Regression Fit a *linear* function to the data,

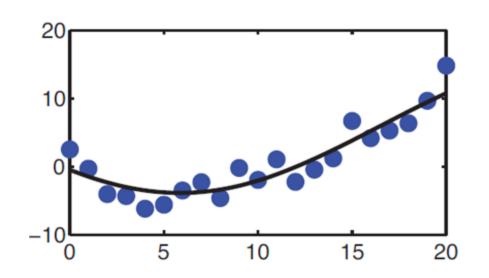
$$y = w^T x$$

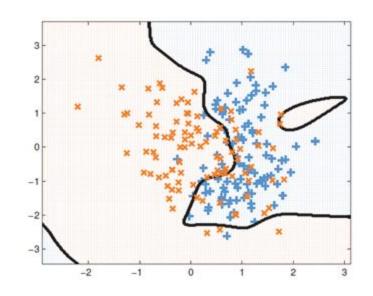
[Image: Hastie et al. (2001)]



Logistic Regression Learn a decision boundary that is *linear in the data*,

$$y = \mathbf{I}\{w^{\mathsf{T}}x \ge 0\}$$



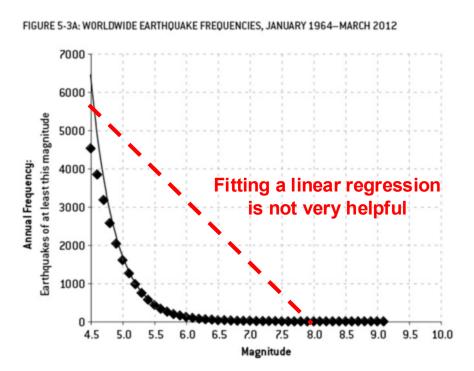


What if our data are *not* well-described by a linear function?

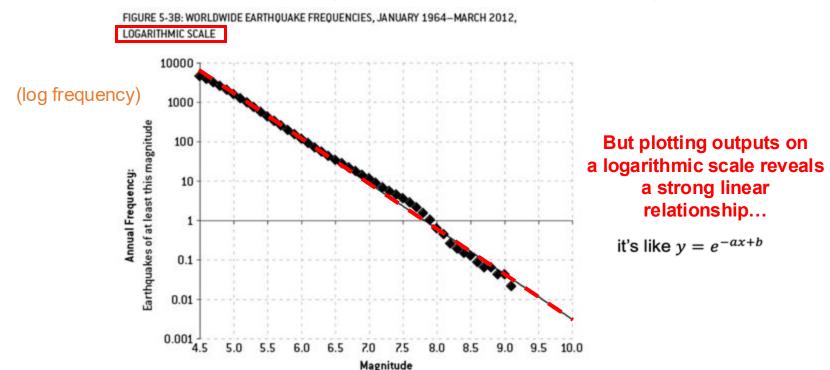
What if classes cannot be well-distinguished by a linear function?

Example: Earthquake Prediction

Suppose that we want to predict the number of earthquakes that occur of a certain magnitude. Our data are given by,



Suppose that we want to predict the number of earthquakes that occur of a certain magnitude. Our data are given by,



• Recall: for 1d problem, we embedded the feature: $x' = (x, 1) \in \mathbb{R}^2$ so we can encode the intercept term.

$$\phi_0(x) = 1$$
 $\phi_1(x) = x$ $y = \mathbf{w}^{\mathsf{T}} \Phi_{\mathsf{lin}}(x) = \phi_0(x) w_0 + \phi_1(x) w_1 = w_0 + w_1 x$

• Recall: for 1d problem, we embedded the feature: $x' = (x, 1) \in \mathbb{R}^2$ so we can encode the intercept term.

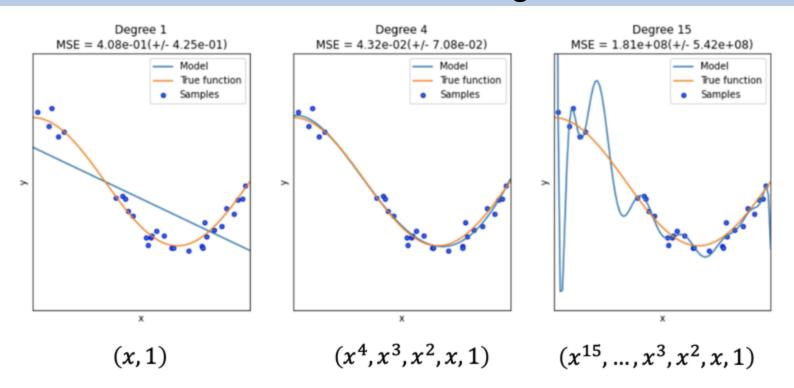
$$\phi_0(x) = 1$$
 $\phi_1(x) = x$ $y = \mathbf{w}^\mathsf{T} \Phi_\mathsf{lin}(x) = \phi_0(x) w_0 + \phi_1(x) w_1 = w_0 + w_1 x$

- Actually, the embedding trick is stronger.
 - $(x^2, x, 1)$: 2nd order polynomial with respect to x
 - $(x^d, x^{d-1}, ..., 1)$: d-th order polynomial (= degree d)

$$\phi_0(x) = 1 \qquad \phi_1(x) = x \qquad \phi_2(x) = x^2$$

$$y = \mathbf{w}^\mathsf{T} \Phi_{\mathsf{lin}}(x) = \phi_0(x) w_0 + \phi_1(x) w_1 + \phi_2(x) w_2 = w_0 + w_1 x + w_2 x^2$$

Feature embedding trick



higher-order polynomial = higher complexity = prone to overfitting!

Basis Functions

- A basis function can be any function of the input features X
- Define a set of *B* basis functions $\phi_1(x), \ldots, \phi_B(x)$
- Fit a linear regression model in terms of basis functions,

$$y = \sum_{b=1}^{B} w_b \phi_b(x) = w^T \phi(x) \qquad \text{notation:} \\ \phi(x) \coloneqq [\phi_1(x), ..., \phi_B(x)]$$

- The model is *linear* in the transformed basis/induced features $\phi(x)$.
- The model is nonlinear in the data X

Linear Regression

Recall the ordinary least squares solution is given by,

$$\mathbf{x} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1D} \\ 1 & x_{21} & \dots & x_{2D} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{m1} & \dots & x_{mD} \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \qquad \mathbf{w}^{\text{OLS}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Design Matrix (each training input on a column)

Vector of Training labels

Can similarly solve in terms of basis functions,

$$\mathbf{\Phi} = \begin{pmatrix} 1 & \phi_1(x_1) & \dots & \phi_B(x_1) \\ 1 & \phi_1(x_2) & \dots & \phi_B(x_2) \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \phi_1(x_m) & \dots & \phi_B(x_m) \end{pmatrix} \qquad \mathbf{w}^{\text{OLS}} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

sklearn.preprocessing.PolynomialFeatures

degree : int or tuple (min_degree, max_degree), default=2

If a single int is given, it specifies the maximal degree of the polynomial features. If a tuple (min_degree, max_degree) is passed, then min_degree is the minimum and max_degree is the maximum polynomial degree of the generated features. Note that min_degree=0 and min_degree=1 are equivalent as outputting the degree zero term is determined by include_bias.

interaction_only: bool, default=False

If True, only interaction features are produced: features that are products of at most degree distinct input features, i.e. terms with power of 2 or higher of the same input feature are excluded:

- included: x[0], x[1], x[0] * x[1], etc.
- excluded: x[0] ** 2, x[0] ** 2 * x[1], etc.

include bias: bool, default=True

If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model).

order: {'C', 'F'}, default='C'

Order of output array in the dense case. 'F' order is faster to compute, but may slow down subsequent estimators.

Example: Polynomial Basis Functions

Create three two-dimensional data points [0,1], [2,3], [4,5]:

Compute quadratic features $(1, x_1, x_2, x_1^2, x_1x_2, x_2^2)$,

These are now our new data and ready to fit a model...

Example: Polynomial Basis Functions

Create a 3-rd order polynomial (cubic) function,

```
f = lambda x: (x-1)*(x-2)*(x-3)
import numpy.random as ra
ra.seed(20)
train_x = np.arange(5)
train_y = f(train_x) + 1*ra.randn(len(train_x))
train_y

    0.3s
array([-5.11610689, 0.19586502, 0.35753652, -2.34326191, 4.91516741])
```

Plot train set and the actual function

```
test_x = np.linspace(-1,5,400)

from matplotlib import pyplot as plt
plt.scatter(train_x,train_y)

plt.plot(test_x, f(test_x))
plt.legend(['train set', 'true'])
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
```



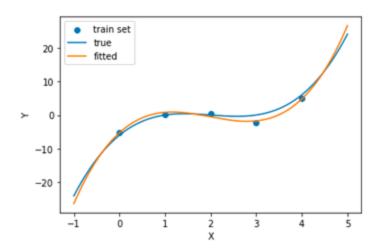
Example: Polynomial Basis Functions

Create cubic features $(1, x, x^2, x^3)$

Perform linear regression; plot it

```
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(train_xx, train_y)
test_x = np.linspace(-1,5,400)
test_xx = poly.fit_transform(test_x[:,np.newaxis])
pred_y = model.predict(test_xx)

plt.scatter(train_x,train_y)
plt.plot(test_x, f(test_x))
plt.plot(test_x, pred_y)
plt.legend(['train set', 'true', 'fitted'])
plt.xlabel('X')
plt.ylabel('Y')
plt.show()
```



- Generally the first step in data science involves preprocessing or transforming data in some way
 - Filling in missing values (imputation)
 - Centering / normalizing / standardizing
 - Etc.
- We then fit our models to this preprocessed data
- One way to view preprocessing is simply as computing some basis function $\phi(x)$, nothing more

Basis Functions

PROs

- More flexible modeling that is nonlinear in the original data
- Increases model expressivity

CONs

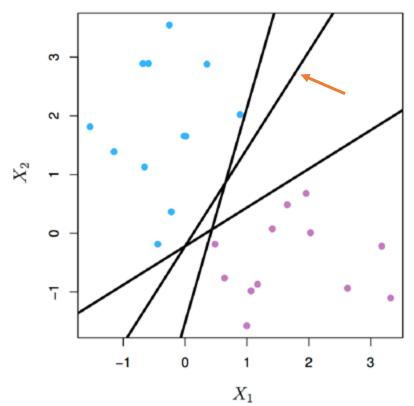
- Typically requires more parameters to be learned
- More sensitive to overfitting training data (due to expressivity)
- Requires more regularization to avoid overfitting
- Need to find good basis functions (feature engineering)

- Basis Functions
- Support Vector Machine
- Neural Networks

Linear Decision Boundary

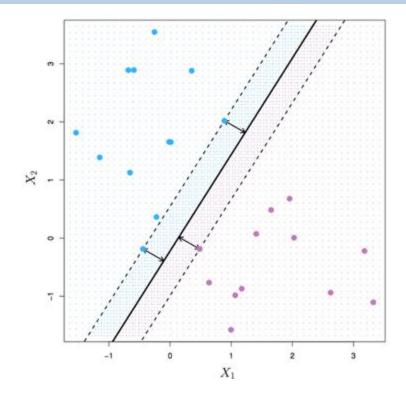
Forget about the 'regression' point of view for now...

At the end of the day, we just want a line that separates the two classes well.



Q: but if you have to choose one, which one will you choose?

Classifier Margin



The **margin** measures minimum distance between each class and the decision boundary

Observation Decision boundaries with larger margins are more likely to generalize to unseen data

Idea Learn the classifier with the largest margin that still separates the data...

...we call this a *max-margin classifier*

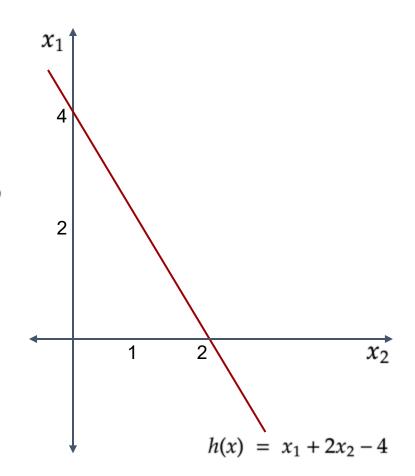
Hyperplane

A linear discriminant function in D dimensions is given by a hyperplane, defined as follows:

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$
$$= w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$$

For points that lie on the hyperlane, we have:

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$



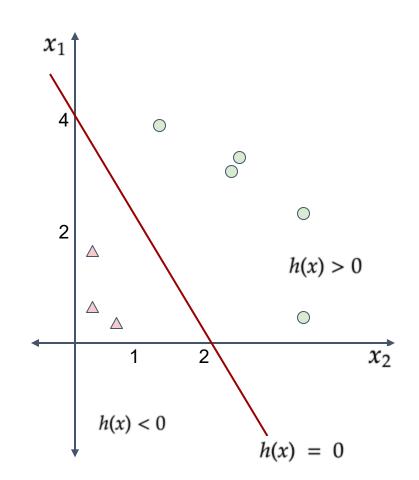
Separating Hyperplane

A hyperplane h(x) splits the original ddimensional space into two half-spaces. If the input dataset is linearly separable:

$$y = \begin{cases} +1 & \text{if } h(\mathbf{x}) > 0 \\ -1 & \text{if } h(\mathbf{x}) < 0 \end{cases}$$

Example:

$$h(x) = x_1 + 2x_2 - 4$$



Separating Hyperplane: weight vector

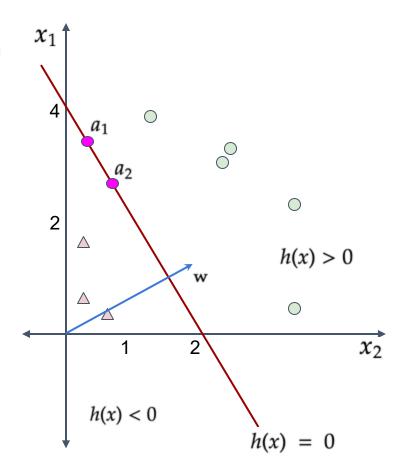
Let a_1 and a_2 be two arbitrary points that lie on the hyperplane, we have:

$$h(\mathbf{a}_1) = \mathbf{w}^T \mathbf{a}_1 + b = 0$$
$$h(\mathbf{a}_2) = \mathbf{w}^T \mathbf{a}_2 + b = 0$$

Subtracting one from the other:

$$\mathbf{w}^T(\mathbf{a}_1 - \mathbf{a}_2) = 0$$

The weight vector **w** is orthogonal to the hyperplane.



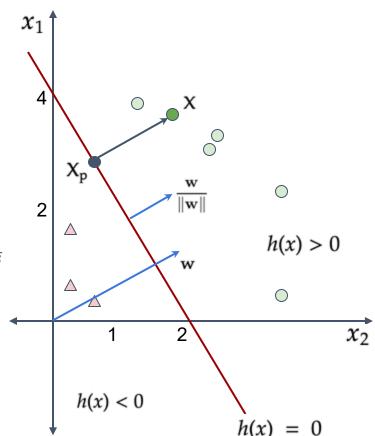
Consider a point X not on the hyperplane. Let X_p be the projection of X on the hyperplane.

Let r be the steps need to walk from X_p to X.

$$\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

$$\|w\| = \sqrt{w^T w} = \sqrt{\sum_i w_i^2}$$

Q: how many steps/direct distance do we need to walk?



Consider a point X not on the hyperplane. Let X_p be the projection of X on the hyperplane.

Let r be the steps need to walk from X_p to X.

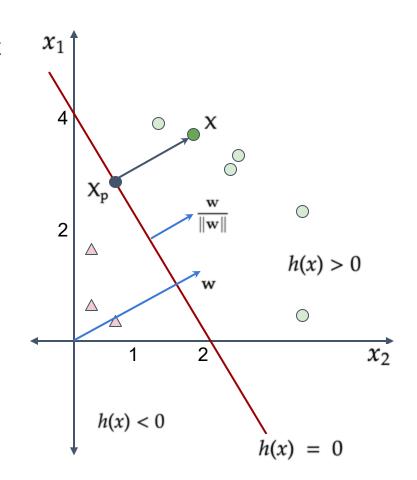
$$h(\mathbf{x}) = h(\mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|})$$

$$= \mathbf{w}^T \left(\mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}\right) + b$$

$$= \underbrace{\mathbf{w}^T \mathbf{x}_p + b}_{h(\mathbf{x}_p)} + r \frac{\mathbf{w}^T \mathbf{w}}{\|\mathbf{w}\|}$$

$$= \underbrace{h(\mathbf{x}_p)}_{0} + r \|\mathbf{w}\|$$

$$= r \|\mathbf{w}\| \qquad r = \frac{h(\mathbf{x})}{\|\mathbf{w}\|}$$



Q: What is the direct distance from origin (x=0) to the hyperplane?

$$r = \frac{h(\mathbf{x})}{\|\mathbf{w}\|} \quad r = \frac{h(\mathbf{0})}{\|\mathbf{w}\|} = \frac{\mathbf{w}^T \mathbf{0} + b}{\|\mathbf{w}\|} = \frac{b}{\|\mathbf{w}\|}$$

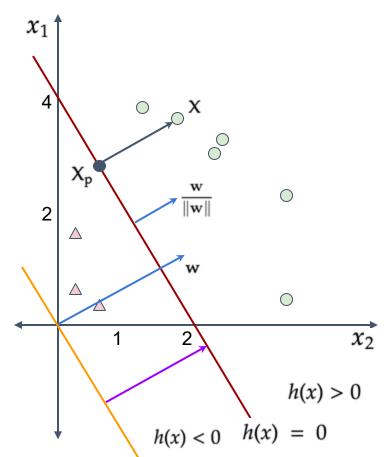
Example:

$$h(x) = x_1 + 2x_2 - 4$$

 $w^T x + b = (1 \ 2) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} - 4$

$$\frac{b}{\|w\|} = -\frac{4}{\sqrt{5}}$$

Q: how to deal with negative distance?



Q: How to deal with negative distance?

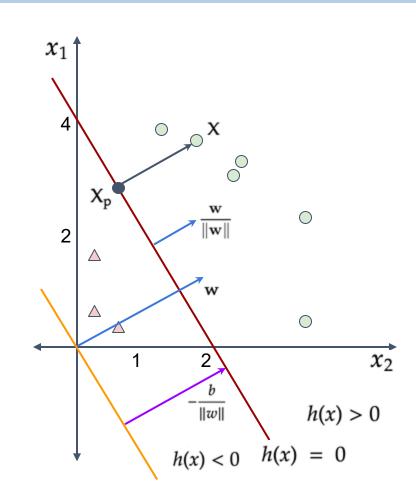
$$r = \frac{h(\mathbf{x})}{\|\mathbf{w}\|}$$

$$y = \begin{cases} +1 & \text{if } h(\mathbf{x}) > 0 \\ -1 & \text{if } h(\mathbf{x}) < 0 \end{cases}$$

$$\delta = y \ r = \frac{y \ h(\mathbf{x})}{\|\mathbf{w}\|}$$

Example (when point is the origin):

$$(-1)\cdot\frac{b}{\|w\|}=\frac{4}{\sqrt{5}}$$



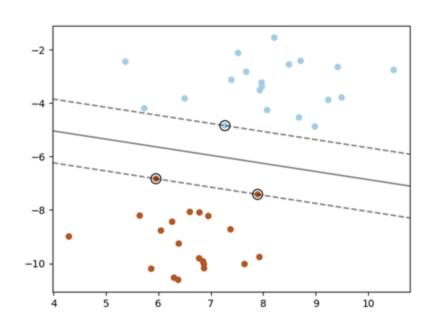
Margin and Support Vectors

$$\delta = y \ r = \frac{y \ h(\mathbf{x})}{\|\mathbf{w}\|}$$

Over all the n points, the *margin* of the linear classifier is the minimum distance of a point from the separating hyperplane:

$$\delta^* = \min_{\mathbf{x}_i} \left\{ \frac{y_i(\mathbf{w}^T \mathbf{x}_i + b)}{\|\mathbf{w}\|} \right\}$$

All the points that achieve this minimum distance are called *support vectors*.



Max-Margin Classifier (Linear Separable Case)

For training data $\{(x^{(i)},y^{(i)})\}_{i=1}^m$, a classifier $f(x)=w^{\mathsf{T}}x+b$ with 0 train error will satisfy

$$y^{(i)}f\big(x^{(i)}\big) = y^{(i)}\big(w^{\top}x^{(i)} + b\big) > 0$$

↓ negative margin when misclassifying it!

The distance for $(x^{(i)}, y^{(i)})$ to separating hyperplane

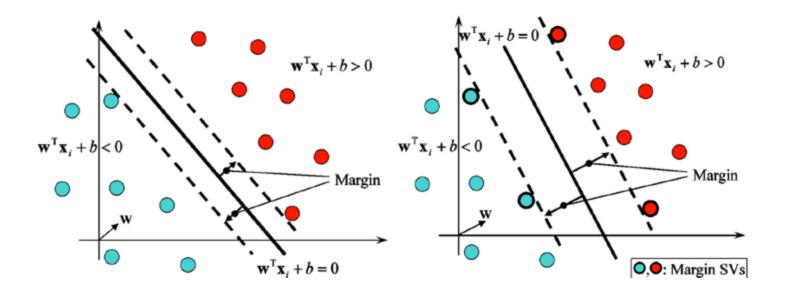
 $\frac{y^{(i)}(w^{T}x^{(i)}+b)}{\|w\|}$

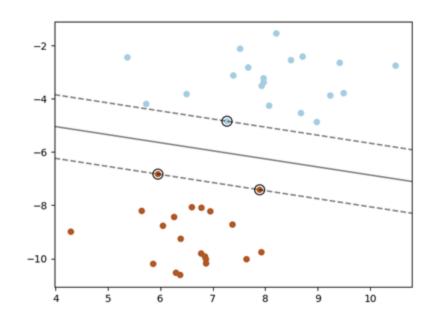
The margin of a classifier f(x) is

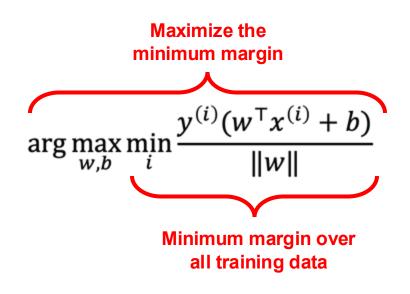
 $\min_{i} \frac{y^{(i)}(w^{\mathsf{T}}x^{(i)} + b)}{\|w\|}$

Find f that maximize margin

 $\arg \max_{w,b} \min_{i} \frac{y^{(i)}(w^{T}x^{(i)} + b)}{\|w\|}$







Find the parameters (w,b) that **maximize** the **smallest margin** over all the training data

Canonical Hyperplane

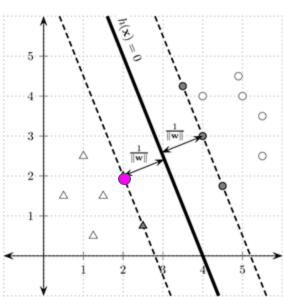
$$\arg \max_{w,b} \min_{i} \frac{y^{(i)}(w^{\mathsf{T}}x^{(i)} + b)}{\|w\|} \longrightarrow 1 \text{ for support vectors}$$

Issue: infinite equivalent hyperplanes result in infinite solutions

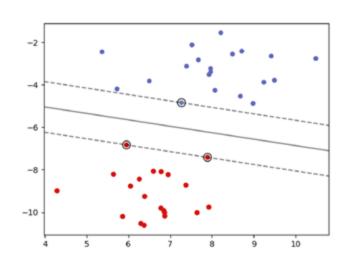
Solution: choose the scalar s such that the absolute distance of a **support vector** from the hyperplane is $\frac{1}{||w||}$

Margin:
$$\delta^* = \frac{1}{\|\mathbf{w}\|}$$

$$\text{Max margin:} \quad h^* = \arg\max_h \left\{ \delta_h^* \right\} = \arg\max_{\mathbf{w},b} \left\{ \frac{1}{\|\mathbf{w}\|} \right\}$$



... it leads to



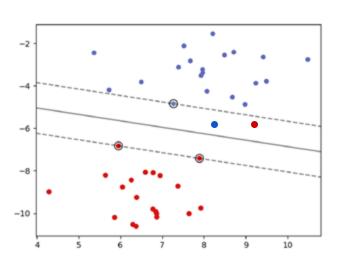
$$\min_{w,b} \frac{1}{2} ||w||^2$$

subject to
 $y^{(i)}(w^{\top}x^{(i)} + b) \ge 1$ for $i = 1, \dots, m$

This is a convex (quadratic) optimization problem that can be solved efficiently

- Data are D-dimensional vectors
- Margins determined by nearest data points called support vectors
- We call this a support vector machine (SVM)

If the data is linearly not separable,

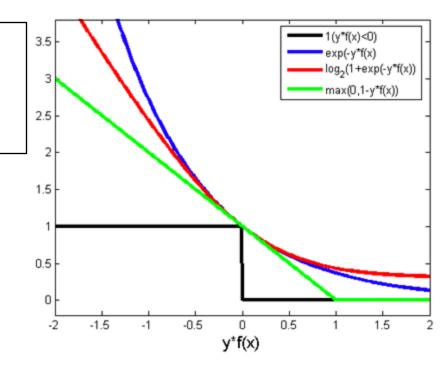


min
$$\frac{1}{2}\|w\|^2 + C \cdot \sum_{i=1}^m \xi_i$$
 subject to $y^{(i)}(w^\top x^{(i)} + b) \geq 1 - \xi_i$ $\xi_i \geq 0$ for $i = 1, \dots, m$

Equivalent formulation
$$\min_{\mathbf{w}, \mathbf{b}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} (1 - y^{(i)} (\mathbf{w}^{\mathsf{T}} \mathbf{x}^{(i)} + b))_+$$

$$\min_{\mathbf{w}, \mathbf{b}} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} (1 - y^{(i)} (\mathbf{w}^{\mathsf{T}} x^{(i)} + b))_{+}$$

$$\ell(f; x^{(i)}, y^{(i)}) = (1 - y^{(i)}f(x^{(i)}))$$



$$(X)_+ := \max(X, 0)$$

SVM - Soft Margin: an example

Hinge loss =
$$max(0, 1-y_i(w^Tx_i+b))$$

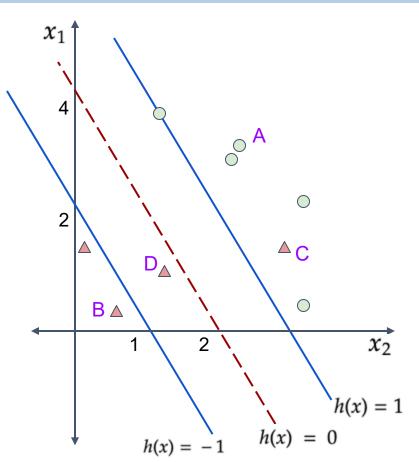
$$A: max(0, 1-1\cdot (>1)) \to 0$$

$$B: max(0, 1 - (-1) \cdot (< -1)) \rightarrow 0$$

$$C: max(0, 1-(-1)\cdot (>1)) \rightarrow > 1$$

$$D: max(0, 1 - (-1) \cdot (between [-1, 0]))$$

$$\rightarrow$$
 between [0, 1]



SVM in Scikit-Learn

SVM with linear decision boundaries,

sklearn.svm.LinearSVC

Call options include...

penalty : {'l1', 'l2'}, default='l2'

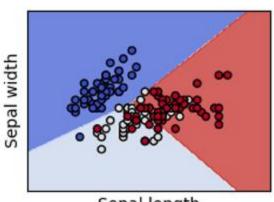
Specifies the norm used in the penalization. The '12' penalty is the standard used in SVC. The '11' leads to coef_ vectors that are sparse.

dual: bool, default=True

Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_s amples > n_s features.

C: float, default=1.0

Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive.



Sepal length

sklearn.svm.SVC

kernel: {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'}, default='rbf'

Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).

gamma: {'scale', 'auto'} or float, default='scale'

Kernel coefficient for 'rbf', 'poly' and 'sigmoid'.

for RBF, small γ : complex decision boundary large γ : more like linear decision boundary

- if gamma='scale' (default) is passed then it uses 1 / (n_features * X.var()) as value of gamma,
- if 'auto', uses 1 / n_features.

max iter: int, default=-1

Hard limit on iterations within solver, or -1 for no limit.

verbose: bool, default=False

Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context.

class_weight: dict or 'balanced', default=None

Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)).

Example: Fisher's Iris Dataset

Classify among 3 species of Iris flowers...

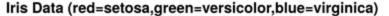
Iris versicolor

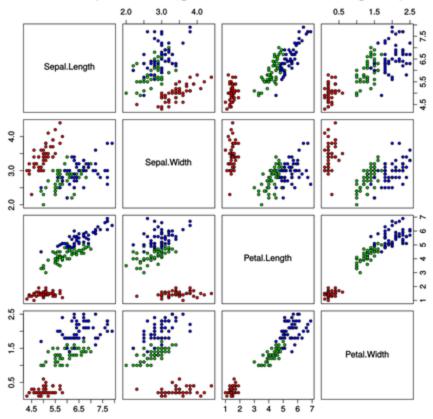
Iris virginica

Four features (in centimeters)

- Petal length / width
- Sepal length / width

Example: Fisher's Iris Dataset





Fairly easy to separate setosa from others using a linear classifier

Need to use nonlinear basis / kernel representation to better separate other classes

Example: Fisher's Iris Dataset

Train 8-degree polynomial kernel SVM classifier,

```
from sklearn.svm import SVC
svclassifier = SVC(kernel='poly', degree=8)
svclassifier.fit(X_train, y_train)
```

Generate predictions on held-out test data,

```
y_pred = svclassifier.predict(X_test)
```

Show confusion matrix and classification accuracy,

```
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

```
[[11 0 0]
[ 0 12 1]
[ 0 0 6]]
```

	precision	recall	f1-score	support
Iris-setosa Iris-versicolor	1.00 1.00 0.86	1.00 0.92 1.00	1.00 0.96 0.92	11 13
Iris-virginica avg / total	0.86	0.97	0.92 0.97	6 30