

CSC380: Principles of Data Science

Probability 1

Xinchen Yu

Outline

- What is probability?
- Events
- Calculating probabilities
- Set Theory
- Law of Total Probability

What is probability?

Interpreting probabilities

Basically two different ways to interpret:

- Objective probability
 - based on logical analysis or long-run frequency of an event. It's derived from known facts, symmetry, or repeated experiments.
- Subjective probability
 - based on personal belief, opinion, or information about how likely an event is, especially when there's uncertainty or limited data.

Outcome, Event and Probability

Outcome

- Outcome is a single result/observation of a random experiment.
- Example 1: You flip a coin once.
 - The outcomes are: "Heads" or "Tails"
- Example 2: You roll a 6-sided die.
 - The outcomes are: 1, or 2, or 3, or 4, or 5, or 6
- Example 3: You tap "shuffle play" on your favorite Spotify playlist with 100 songs and the first song played.
 - The outcomes are: the 1st song in the list, or the 2nd song,

The Sample Space

- The set of all possible outcomes of a random experiment is called the sample space, written as S.
- In math, the standard notation for a set is to write the individual members in curly braces:
 - S = {Outcome1, Outcome2, . . . , }
- Useful to visualize the sample space with an actual space.

Events

- An event E is a subset of the sample space.
- An event E is a set of outcomes
- When we make a particular observation, it is either "in" E or not.
 Helpful to think about events as propositions (TRUE/FALSE).
 - The proposition is TRUE when the outcome is among the elements of the event set, and FALSE otherwise.
 - Is 4 in event E = {2, 4, 6}? ✓ YES → the proposition is TRUE
 - Is 4 in event $F = \{1, 3, 5\}$? \times NO \rightarrow the **proposition is FALSE**

Special events

- The sample space (S) includes all possible outcomes.
 - If an event E = S, then no matter what outcome occurs it's always in E.
 - e.g., E = {Heads, Tails}
- The empty set Ø is also an event
 - It is an event that never happens
 - e.g. "the die comes up 7", E = {7}

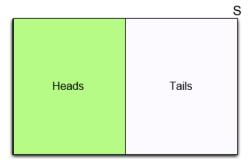
Calculating Probabilities

Calculating probability using symmetry

 If we have a sample space for which every outcome is equally likely, then we can find event probabilities easily.

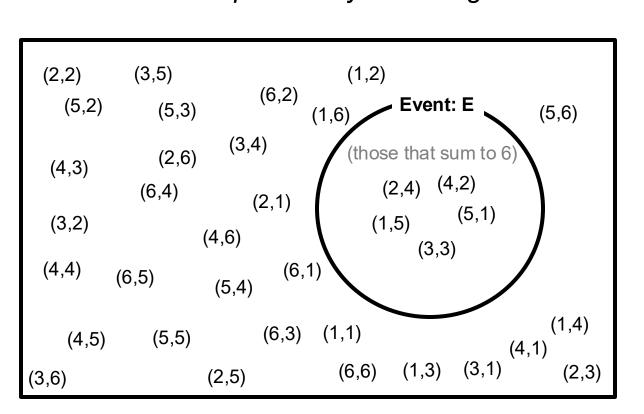
 Since every outcome has the same "area", we can just count:

$$P(E) = \frac{\text{#outcomes in } E}{\text{#outcomes in } S}$$



Random Events and Probability

What is the probability of having two numbers sum to 6?



$$P(E) = \frac{\text{#outcomes in } E}{\text{#outcomes in } S}$$

$$S = \{(a, b) : a, b \in \{1, \dots, 6\}\}\$$

Each outcome is equally likely

of outcomes that sum to 6:

answer:

Probability as Area

 Notice that we can find the total probability of an event by breaking it into pieces and adding up the probabilities of the pieces:

$$P(Even) = P(2) + P(4) + P(6)$$

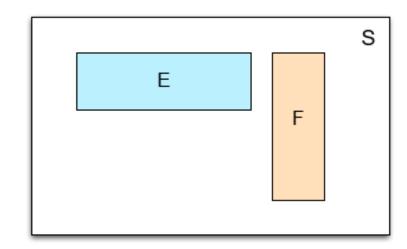
1	2 P(2) = 1/6	3
4 P(4) = 1/6	5	6 P(6) = 1/6

- These pieces are called 'elementary events'
 - Events that correspond to exactly one outcome

Probability as Area

- In general, breaking an event into disjoint events preserves the total probability
- Disjoint: E and F are disjoint if they cannot happen simultaneously,
- e.g. E = {2, 4}, F={1, 3, 5}
- In such cases,

$$P(E \text{ or } F) = P(E) + P(F)$$



Partition

- We say that disjoint events E_1 , ..., E_n form a partition of E if any outcome in E lies in exactly one E_i
- · e.g.
 - {Fr.} E₁, {Soph.} E₂ form a partition of {Lower division} E
 - {Fr.}, {Soph.} {J.} {Sen.} form a partition of *S* (sample space)

Freshmen	Sophomores	Juniors	Seniors

Probability as Area

For disjoint events *E*, *F*:

$$P(E \text{ or } F) = P(E) + P(F)$$

More generally, If disjoint events E_1, \dots, E_n forms a partition of :

$$P(E) = P(E_1) + P(E_2) + \dots + P(E_n)$$

For event *F*(law of total probability):

$$P(F) = P(E_1, F) + P(E_2, F) + \dots + P(E_n, F)$$

Notation: P(A, B) is a shorthand for P(A and B)

Inclusion-Exclusion Principle

Inclusion-Exclusion Principle For any events E and F,

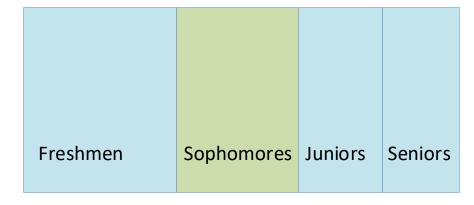
$$P(E \text{ or } F) = P(E) + P(F) - P(E \text{ and } F)$$
Accounting for overlap between $E \text{ and } F$

Freshmen Sophomores Juniors Seniors

Complementary events

How would I find *P*(Non-Sophomore)?

- Could just list the non-sophomores and then count, but we can use the fact that P(S) = 1 and subtract instead.
 - P(Non-Sophomore) = 1 P(Sophomore)



Set operations

Events and Set Theory

An event is a set of outcomes and a subset of sample space, so we use set theory to describe and combine them.

Two dice example:

$$E_1$$
: First die rolls 1 E_2 : Second die rolls 1 $E_1 = \{(1,1), (1,2), \dots, (1,6)\}$ $E_2 = \{(1,1), (2,1), \dots, (6,1)\}$

- Any die rolls 1: event E₁ or E₂
- Set operation: $E_1 \cup E_2$

Set operations

Two dice example:

 E_1 : First die rolls 1

 E_2 : Second die rolls 1

$$E_1 = \{(1,1), (1,2), \dots, (1,6)\}$$

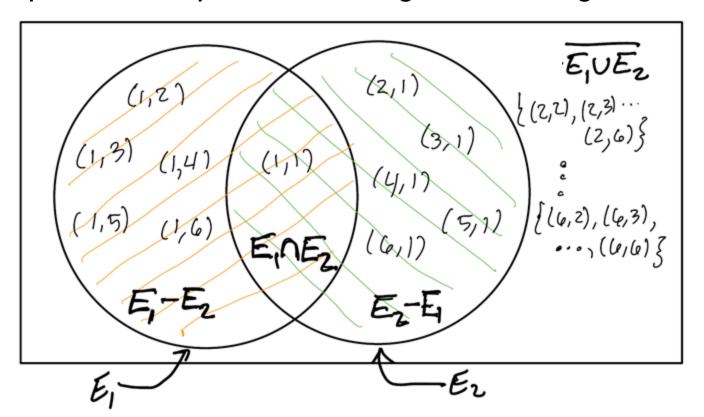
$$E_1 = \{(1,1), (1,2), \dots, (1,6)\}$$
 $E_2 = \{(1,1), (2,1), \dots, (6,1)\}$

Operators on events:

Operation	Value	Interpretation	
$E_1 \cup E_2$	$\{(1,1),(1,2),\ldots,(1,6),(2,1),\ldots,(6,1)\}$	Any die rolls 1	
$E_1 \cap E_2$	$\{(1,1)\}$	Both dice roll 1	
$E_1 \setminus E_2$	{(1,2), (1,3), (1,4), (1,5), (1,6)}	Only the first die rolls 1	
$\overline{E_1 \cup E_2}$	$ \begin{array}{l} -E_2 := E_1 \cap E_2^c) \\ \{(2,2), (2,3), \dots, (2,6), (3,2), \dots, (6,6)\} \\ \cup E_2)^c) \end{array} $	No die rolls 1	

Set operations

Can interpret these operations using a Venn diagram...

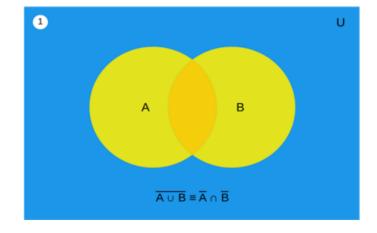


Set Theory: De Morgan Law

De Morgan Law 1 $(A \cup B)^C = A^C \cap B^C$

Example:

- A: I bring my cellphone
- B: I bring my laptop
- A^C: I don't bring my cellphone
- B^C: I don't bring my laptop

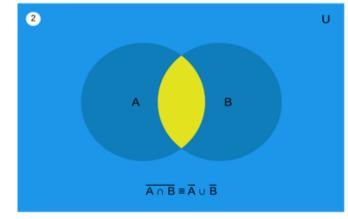


- A U B: I bring my cellphone or my laptop
- (A U B)^C: I bring neither my cellphone nor my laptop
- A^C ∩ B^C: I didn't bring my cellphone & I didn't bring my laptop

Set Theory: De Morgan Law

De Morgan Law 2 $(A \cap B)^C = A^C \cup B^C$

Ex: try to make sense of it using the same example above



De Morgan Law generalizes to a collection of n events

But first, let's define some notations

Intersection / union over n events

- n lightbulbs
- E_i : *i*-th lightbulb is on

- How to describe the event that at least one lightbulb is on?
 - i.e. bulb 1 is on OR ... OR bulb n is on

$$E_1 \cup \cdots \cup E_n =: \cup_{i=1}^n E_i$$

• How to describe the event that all lightbulbs are on?

$$E_1 \cap \cdots \cap E_n = \cap_{i=1}^n E_i$$

De Morgan Laws with n events

De Morgan Laws:

$$(E_1 \cup \cdots \cup E_n)^C = E_1^C \cap \cdots \cap E_n^C$$

Not (at least one bulb is on)

All bulbs are off

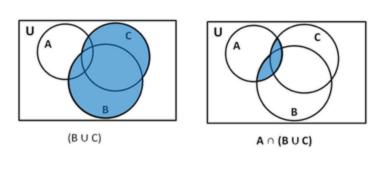
$$(E_1 \cap \dots \cap E_n)^C = E_1^C \cup \dots \cup E_n^C$$

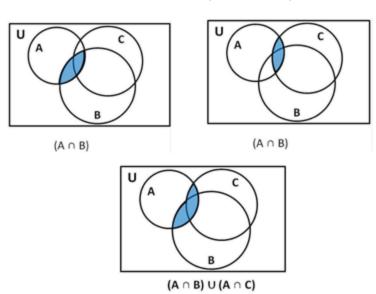
Not (all bulbs are on)

At least one bulbs is off

Set operation: Distributive law

- Distributive law in arithmetics a(x + y) = ax + ay carry over to sets
- Distributive Law 1 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$





Set operation: Distributive law

• Distributive Law 2 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- Can justify this by:
 - drawing a picture (like previous slide), or
 - proving it using Distributive Law 1 and De Morgan Law

Rules of Probability

Rules of probability

To recap and summarize:

Rules of Probability

- 1. Non-negativity: All probabilities are between 0 and 1 (inclusive)
- **2.** Unity of the sample space: P(S) = 1
- 3. Complement Rule: $P(E^C) = 1 P(E)$
- 4. Probability of Unions:
 - (a) In general, $P(E \cup F) = P(E) + P(F) P(E \cap F)$
 - (b) If E and F are disjoint, then $P(E \cup F) = P(E) + P(F)$

Classical probability model

Special case

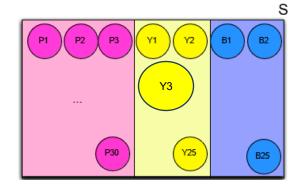
Assume each outcome is equally likely, and sample space is <u>finite</u>, then the probability of event is:

$$P(E) = \frac{|E|}{|S|}$$
 Number of elements in event set Number of possible outcomes (e.g. 36)

This is called <u>classical probability model</u>

Rethinking the classical probability model

- Classical probability model assumes all outcomes equally likely
- When is this applicable?
 - Fair coin toss, fair dice throw, ...
 - S = {P1, P2, ..., P30, Y1, ..., Y25, B1, ..., B25}
- When is this assumption problematic?
 - Unfair coin toss (one side is heavier)
 - A yellow ball is much larger

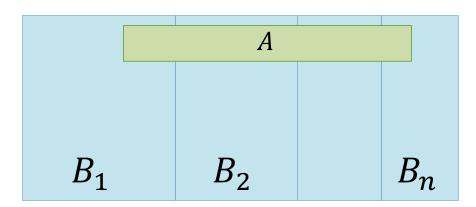


Law of Total Probability

Law of Total Probability

Law of Total Probability Suppose $B_1, ..., B_n$ form a partition of the sample space S. Then,

$$P(A) = P(A, B_1) + \dots + P(A, B_n)$$



- Recall notation: $P(A, B_1)$ is a shorthand for $P(A \cap B_1)$
- Why? $A \cap B_1, ..., A \cap B_n$ form a partition of A

Summary: calculating probabilities

If we know that all outcomes are equally likely, we can use

We will use combinatorics to do counting

$$P(E) = \frac{|E|}{|S|}$$
 Number of elements in event set Number of possible outcomes (e.g. 36)

- If |E| is hard to calculate directly, we can try
 - the rules of probability
 - the Law of Total Probability, using an appropriate partition of sample space S