

CSC380: Principles of Data Science

Statistics 2

Xinchen Yu

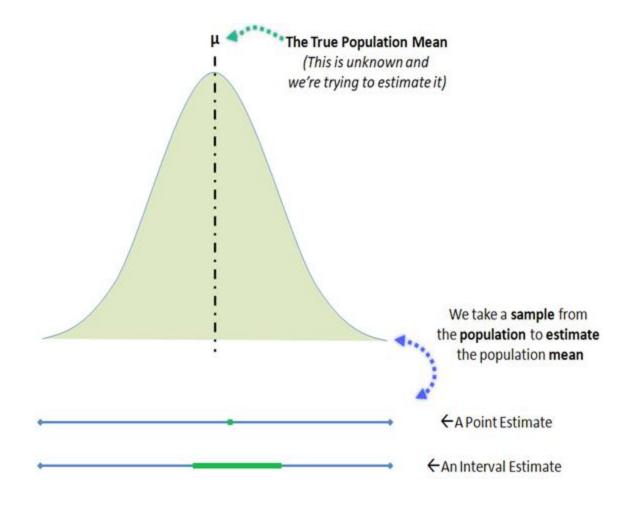
Interval estimation

Hypothesis testing

Interval estimation

Motivation

- Point estimation:
 - "Given the data, I estimate the bias of the coin to be 0.73"
 - "Given the data, I estimate the mean height of UA students to be 172cm"
- In many applications, we'd like to make statements with uncertainty quantifications
 - "Given the data, I estimate the bias of the coin to be 0.73 ± 0.05 "
 - "Given the data, I estimate the mean height of UA students to be 172 ± 2cm"
- This is called interval estimation



Interval Estimation: basic setup

$$heta o X_1, \dots, X_n o I_n = [\hat{\theta}_n \pm b_n]$$
 data generation process Confidence Interval (CI) for θ

Examples

Coin toss: $\theta = p$, $X_1, ..., X_n \sim Bernoulli(p)$

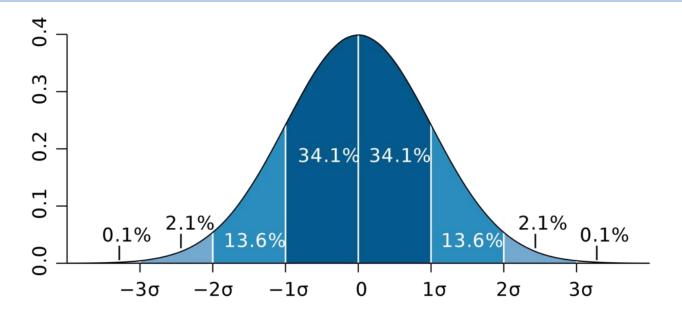
Student height: $\theta = \mu, X_1, ..., X_n \sim N(\mu, 8^2)$

Goal: construct I_n using data, such that with 95% confidence (say), $\theta \in I_n$

We will mostly focus on estimating θ = population mean, and will take $\hat{\theta}_n$ = sample mean.

How to choose b_n ? uncertainty of our estimate

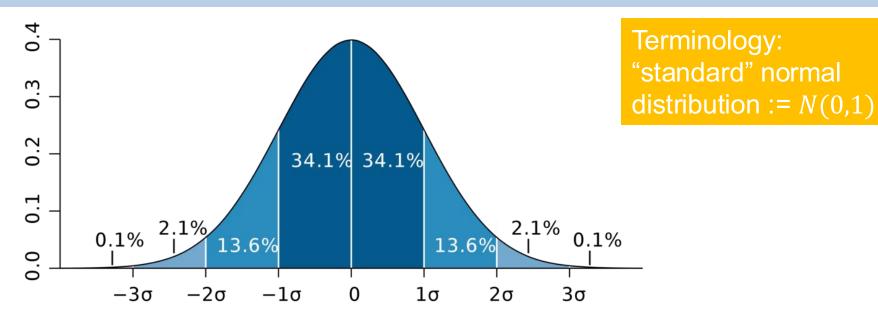
Recall: Normal distribution



For $X \sim N(\mu, \sigma^2)$, we can transform it into $X - \mu \sim N(0, \sigma^2)$

- the area under a normal distribution curve (PDF) represents probability.
- the total area under the curve is equal to 100%.
- the area within a certain range of values corresponds to the probability of a random variable falling within that range.

Recall: Normal distribution



Fact If
$$X \sim N(\mu, \sigma^2)$$
 or $X - \mu \sim N(0, \sigma^2)$, then
$$P(-1.96\sigma \le X - \mu \le 1.96\sigma) = 0.95$$

In words, with 95% confidence, X falls within 1.96 standard deviation of μ $P(X - 1.96\sigma \le \mu \le X + 1.96\sigma) = 0.95$

i.e, with 95% confidence, μ falls within 1.96 standard deviation of X [$X - 1.96\sigma, X + 1.96\sigma$] is a 95% confidence interval for μ

Constructing confidence interval

• We know if $X \sim N(\mu, \sigma^2)$, then $[X - 1.96\sigma, X + 1.96\sigma]$ is a 95% Cl for μ

• Fact: Let $X_1, ..., X_n$ be iid with mean μ and variance σ^2 . Then for large n, the sample mean X_n roughly follow a normal distribution:

$$\bar{X}_n \approx N\left(\mu, \left(\frac{\sigma}{\sqrt{n}}\right)^2\right)$$

Corollary with 95% confidence, μ lies within $1.96\frac{\sigma}{\sqrt{n}}$ of \bar{X}_n

Our confidence interval for μ : $I_n = [\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}]$

Example: UA student height

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, and we observe 4 students' heights:

Find a 95% confidence interval for μ

Solution population stddev sample size our CI for
$$\mu$$
: $I_n = [\bar{X}_n - 1.96\frac{\sigma}{\sqrt{n}}, \bar{X}_n + 1.96\frac{\sigma}{\sqrt{n}}]$

$$= 170 \qquad \sigma = 8 \qquad \text{n=4}$$

Plugging in all values, $I_n = [170 \pm 7.84] = [162.1, 177.8]$

Confidence intervals: extensions

Given if
$$X \sim N(\mu, \sigma^2)$$
 or $X - \mu \sim N(0, \sigma^2)$, then
$$P(-1.96\sigma \le X - \mu \le 1.96\sigma) = 0.95$$

Where does the 1.96 come from?

st.norm.ppf(0.975) gives 1.96

Fact If $X \sim N(\mu, \sigma^2)$, then

Φ: standard normal CDF

$$P(-k \sigma \le X - \mu \le k \sigma) = 2\Phi(k) - 1 = p$$

$$2\Phi(k) - 1 = 0.95 \Rightarrow k = \Phi^{-1}\left(\frac{0.95+1}{2}\right) = \Phi^{-1}(0.975) = 1.96$$

$$k: \left(\frac{1+p}{2}\right) - \text{quantile of the standard normal distribution}$$

CI for
$$\mu$$
: $I_n = [\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}]$

Confidence intervals: extensions

What if we'd like to find 99% confidence interval? 99.9%? 90%?

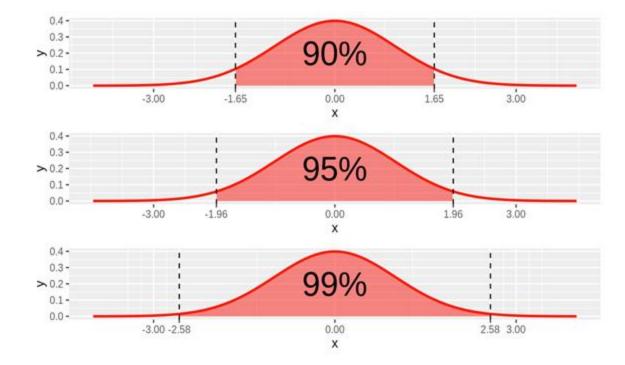
Fact If $X \sim N(\mu, \sigma^2)$, then

$$P(-k \sigma \le X - \mu \le k \sigma) = 2\Phi(k) - 1 = p$$

Our p confidence interval for μ :

$$I_n = [\bar{X}_n \pm \Phi^{-1} \left(\frac{p+1}{2}\right) \frac{\sigma}{\sqrt{n}}] = [\bar{X}_n \pm k \frac{\sigma}{\sqrt{n}}]$$

p	$k = \Phi^{-1} \left(\frac{p+1}{2} \right)$				
0.95	1.96				
0.99	2.58				
0.999	3.29				



Example: UA student height

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, and we observe 4 students' heights:

163, 171, 179, 167

Find 99%, 99.9% confidence intervals for μ

Solution

our
$$p$$
-Cl for μ : $I_n = [\bar{X}_n \pm \Phi^{-1} \left(\frac{p+1}{2}\right) \frac{\sigma}{\sqrt{n}}]$

$$p = 0.99 \Rightarrow [159.7, 180.3]$$

$$p = 0.999 \Rightarrow [156.9, 183.1]$$

p	$\Phi^{-1}\left(\frac{p+1}{2}\right)$			
0.95	1.96			
0.99	2.58			
0.999	3.29			

Confidence interval: observations

$$p ext{-CI for }\mu$$
: $I_n=[\bar{X}_n\pm\Phi^{-1}\left(\frac{p+1}{2}\right)\frac{\sigma}{\sqrt{n}}]$

The center is always at \bar{X}_n

$p = 0.95 \Rightarrow [162.1, 177.8]$ $p = 0.99 \Rightarrow [159.7, 180.3]$ $p = 0.999 \Rightarrow [156.9, 183.1]$

The width of the interval depends on:

- Sample size n: width smaller when n larger
- Confidence level p: width larger when p closer to 1
- Population stddev σ : width larger when σ large (more noise)

What if σ is unknown?

We will address this soon...

Is confidence = probability?

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, and we observe 4 students' heights:

163, 171, 179, 167

we found that a 95% CI for μ is [162.1, 177.8]

Can we say "with probability 95%, the population mean height μ lies in interval [162.1, 177.8]"?

No! This is a common misinterpretation

- μ is deterministic, and [162.1, 177.8] is deterministic,
- Proposition $\mu \in [162.1, 177.8]$ is either true or false!

Then, what does "95% probability" mean?

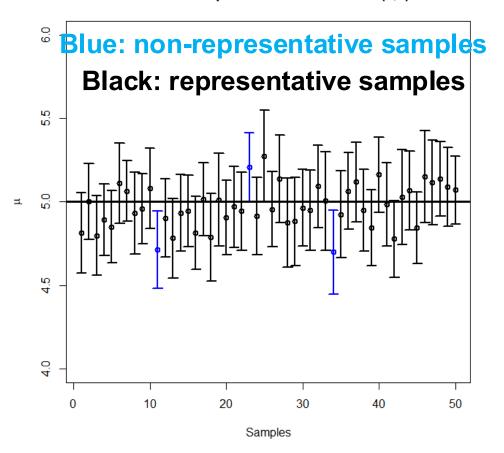
Interpreting CI (think of parallel universe...)

Multiple different universes...

Caveat: interpreting confidence intervals

Recommended point of view:

CI for 50 samples of size 50 X~Nornal(5,1)



universe 1: get sample 1, and confidence interval 1

universe 2: get sample 2, and confidence interval 2

.

universe 50: get confidence interval 50

True: With probability 0.95 over the draw of a sample, $[\bar{X}_n \pm 1.96 \frac{\sigma}{\sqrt{n}}]$ contains μ

Confidence interval: interpretation

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, and we observe 4 students' heights:

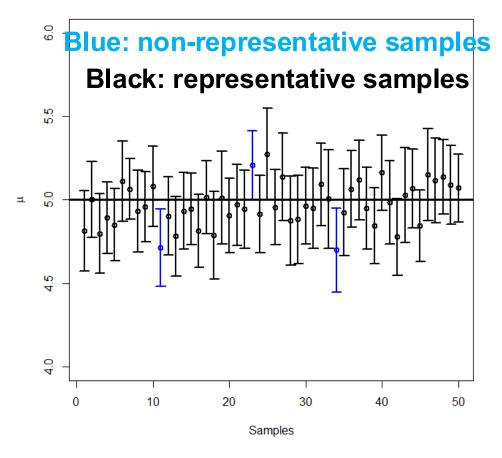
163, 171, 179, 167

True: With probability 0.95 over the draw of a sample, $[\bar{X}_n \pm 1.96 \frac{\sigma}{\sqrt{n}}]$ contains μ

50 draws of samples

- \Rightarrow 50 CIs
- \Rightarrow expect 50× 95% = 47.5 Cl's to contain μ

CI for 50 samples of size 50 X~Nornal(5,1)



Confidence interval: interpretation

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, and we observe 4 students' heights: 163, 171, 179, 167

True: With probability 0.95 over the draw of a sample, $[\bar{X}_n \pm 7.84]$ contains μ

As long as we are not extremely unlucky / our sample is mildly representative, my CI contains μ

Example Assume that UA students' weights (in kgs) follow $N(\mu, \sigma^2)$, and we observe 4 students' weights:

60, 65, 70, 75

Find a 95% confidence interval for μ

Note The CI construction before $[\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}]$ no longer works, since σ is *unknown*

How to fix this?

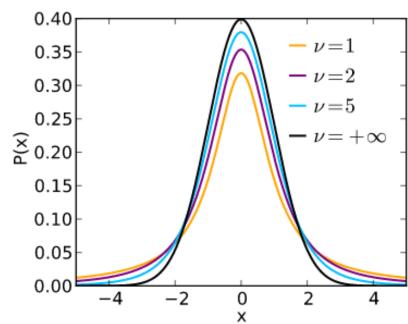
The student-t distribution

• $[\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}]$ no longer works: σ is unknown

Fact $X_1, ..., X_n$ is an iid sample with unknown $\mu \& \sigma^2$.

Let sample stddev:
$$\hat{\sigma}_n = \sqrt{\frac{1}{n-1}} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
. Then, approximately:

$$\sqrt{n} \frac{\bar{X}_n - \mu}{\widehat{\sigma}_n} \sim \text{student-t}(n-1)$$
t-statistic degree of freedom

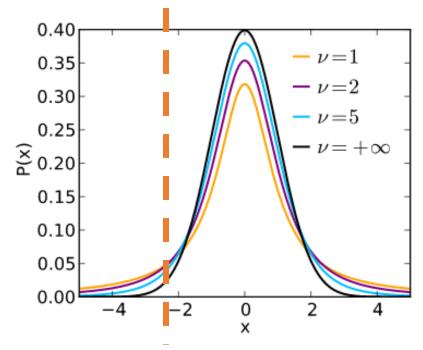


student- $t(\nu)$ is a family of distributions

The student-t distribution

student- $t(\nu)$ distribution family

- goes to Gaussian when ν is large
- generally has heavier tail than Gaussian



import scipy.stats as st

st.t.ppf(0.975,df=100)
$$\Rightarrow$$
 1.98

Recall:

st.norm.ppf(0.975) gives 1.96

CI:
$$\left[\overline{X}_n - w \frac{\widehat{\sigma}_n}{\sqrt{n}}, \overline{X}_n + w \frac{\widehat{\sigma}_n}{\sqrt{n}} \right], w: \left(\frac{1+p}{2} \right)$$
 -quantile of the $t(n-1)$ distribution

Example Assume that UA students' weights (in kgs) follow $N(\mu, \sigma^2)$, and we observe 4 students' weights:

st.t.ppf(0.975,df=3) => 3.18

Find a 95% confidence interval for μ

Solution With 95% confidence, = 6.45

$$\Rightarrow \mu \in \left[\bar{X}_4 - 3.18 \frac{\hat{\sigma}_4}{\sqrt{4}}, \bar{X}_4 + 3.18 \frac{\hat{\sigma}_4}{\sqrt{4}} \right]$$

Plugging data,

our CI is [67.5 - 10.3, 67.5 + 10.3] = [57.2, 77.8] Our confidence interval

General result given a sample $X_1, ..., X_n$ drawn from a distribution with mean μ , a p-confidence interval (e.g. p=95%) is

$$\left[\overline{X}_n - w \frac{\widehat{\sigma}_n}{\sqrt{n}}, \overline{X}_n + w \frac{\widehat{\sigma}_n}{\sqrt{n}} \right],$$

where w is the $\left(\frac{1+p}{2}\right)$ -quantile of the t(n-1) distribution

Example p=0.95, n=4
$$\Rightarrow$$
 $w = 3.18$ st.t.ppf(0.975,df=3) => 3.18

p=0.99, n=4
$$\Rightarrow w = 5.84$$

p=0.99, n=9 $\Rightarrow w = 3.35$

Confidence interval: closing remarks

How to construct confidence intervals for μ ?

- When σ is known
 - CI: $\left[\overline{X}_n k \frac{\sigma}{\sqrt{n}}, \overline{X}_n + k \frac{\sigma}{\sqrt{n}} \right]$, k: $\left(\frac{1+p}{2} \right)$ -quantile of the standard normal distribution st.norm.ppf((1+p)/2)
- When σ is unknown

•
$$CI$$
: $\left[\bar{X}_n - w\frac{\widehat{\sigma}_n}{\sqrt{n}}, \bar{X}_n + w\frac{\widehat{\sigma}_n}{\sqrt{n}}\right]$, $w: \left(\frac{1+p}{2}\right)$ -quantile of the $t(n-1)$ distribution st.t.ppf((1+p)/2,df=n-1)

Hypothesis testing

Announcements

- Fill out SCS at <u>scsonline.ucatt.arizona.edu</u>
- If 80% of class complete the survey, one of the lowest quizzes grade will be replaced with full points (1.5/1.5 pts)
- My office hour next Thursday will change to Monday, Dec 15
- A note on final project
 - Please use the following to print the output of your best system:
 - from sklearn.metrics import classification report
 - print(classification_report(y_true, y_pred))

Hypothesis

- Statements about parameter / property θ of a distribution / population **Examples**
- Average GPA < 2.8
- Probability of head of a coin > 0.6
- People eat more on weekends than weekdays

Simple vs. composite hypotheses

$$\theta = 3.2$$
 (simple), $\theta \in \{3.2, 4\}$ (composite), $\theta \in [3.2, 4]$ (composite)

One-sided vs. two-sided

$$\theta > 3.2$$
 (one-sided), $\theta < 1.5$ or $\theta > 3.2$ (two-sided), $\theta \neq 2$ (two-sided)

Hypothesis testing: choosing from two hypotheses:

- Null hypothesis H_0
 - Status quo, assumption believed to be true
 - Coin in my pocket, probability of head p = 0.5
- Alternative hypothesis H_1 : Complement of H_0
 - Novel finding after research
 - Coin has probability of head $p \neq 0.5$

- How to test?
- Design experiment, collect data, check:

```
If data shows strong evidence against H_0:
```

Reject H_0 (in favor of H_1)

Else

Do not reject H_0 Note: does not necessarily mean "accept H_0 "

- Analogy with the legal principle:
 - Presume innocent (H_0) until proven guilty (H_1) with strong evidence against innocence

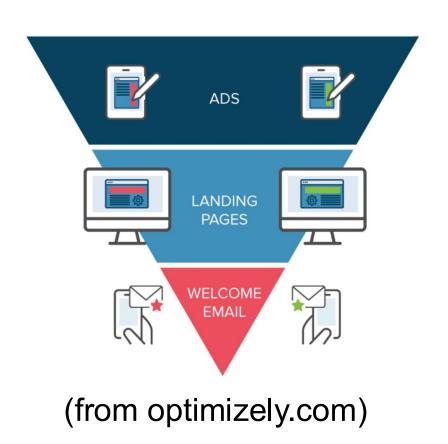
Application: A/B Testing

These days, Internet companies run A/B testing extensively

Try out an alternative of user interface (UI) on <u>randomly chosen subset of users</u> to collect their feedback (e.g. rating)

• E.g, choosing b/w **list view** vs grid view

How do we know if the new UI is better than older one? (i.e., statistically significant)



Application: A/B Testing

Evaluator:	1	2	3	4	5	6
Old UI	5	2	2	5	4	2
New UI	4	4	1	3	3	5

Compute the score differences:

Evaluator:	1	2	3	4	5	6
Score difference X	-1	+2	-1	-2	-1	+3

Can view X's as drawn from some distribution with unknown mean μ

"Does new UI improve over old UI?" is now a hypothesis testing problem:

$$H_0: \mu \leq 0,$$

$$H_1: \mu > 0$$

we can perform e.g. t-test based on data (we will see)

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, test the hypothesis

$$H_0$$
: $\mu = 168$, H_1 : $\mu \neq 168$

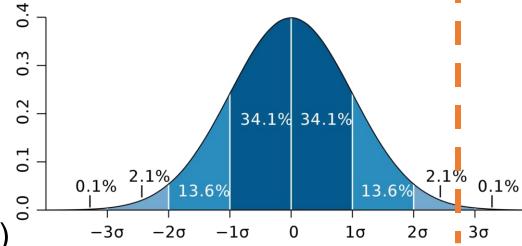
Suppose we observe 4 students' heights: 173, 181, 189, 177

• We want to know if the data provides evidence against this claim H_0 .

• Fact:
$$Z = \frac{\sqrt{n}(\bar{X}_n - 168)}{8} \sim N(0, 1)$$

• Fact:
$$Z = \frac{\sqrt{n}(\bar{X}_n - 168)}{8} \sim N(0, 1)$$

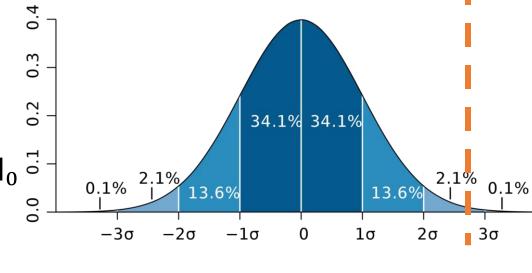
- If H₀ is true:
 - Z close to 0 happen frequently
 - Z values moderately far from 0 (like -2.1, +2.5) happen rarely (only 5% of the time beyond ±1.96)



- Let's say we observe Z = 3
 - If H_0 is true, getting $|Z| \ge 1.96$ has a probability of about 5%.
 - Surprising! this should rarely happen under H₀

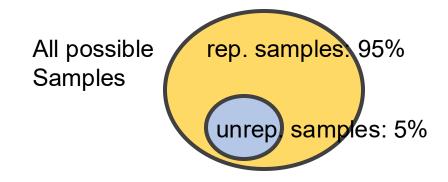
st.norm.ppf(0.975) gives 1.96

- We observe Z=3
 - If H₀ is true, getting |Z| ≥ 1.96 has a probability of about 5%.
 - Surprising! this should rarely happen under H₀ ⁻¹



Two explanations:

- (a) H₀ is TRUE, but I got unlucky
 - my sample happened to be extreme that produce such large Z values
- (b) H₀ IS FALSE
 - My sample is actually representative of the true population
 - null hypothesis wrong: 168 is not true mean



- Two explanations:
 - (a) H₀ is TRUE, but I got unlucky
 - my sample happened to be extreme that produce such large Z values
 - requires believing a rare event (2% probability) occurred Type-I error: reject but H₀ is true
 - (b) H₀ IS FALSE
 - null hypothesis wrong: 168 is not true mean
 - doesn't require believing in rare events

 Need to decide: How rare does the data need to be (under H₀) before I'll reject H₀?

This is where we choose α (significance level).

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, test the hypothesis

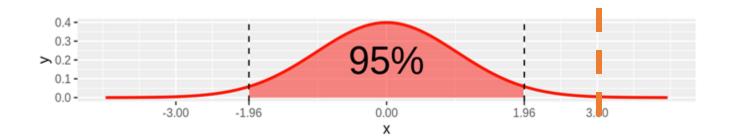
$$H_0$$
: $\mu = 168$, H_1 : $\mu \neq 168$

Suppose we observe 4 students' heights: 173, 181, 189, 177

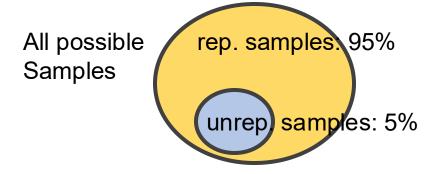
Solution:

How to choose c for other α ?

- We choose $\alpha=0.05$, $Z=\frac{\sqrt{n}(\bar{X}_n-168)}{8}=3$, $P_{H_0}(|Z|\geq 1.96)\leq 0.05$
- Reject H₀: my data would occur with probability ≤ 5% under H₀



• How to choose *c*?



• Significance level α :

$$P_{H_0}(|Z| \ge c) \le \alpha$$

Type-I error: we reject H_0 (due to \bar{X}_n far from 168), but H_0 is true

- Usually α is small, e.g. 0.05
- I.e., stay with the null hypothesis as long as our sample is 95%-representative

Smaller α => more inclined to stay with H_0 => Need stronger evidence to reject H_0

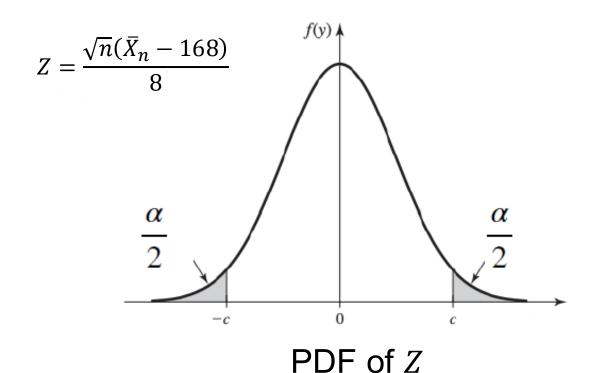
Choose c such that

$$P_{H_0}(|Z| \ge c) = \alpha = 5\%$$
 $Z = \frac{\sqrt{n}(\bar{X}_n - 168)}{8}$

Reject H_0 if $|Z| \ge c$, i.e.

Z falls in the shaded region

Let's find the value of c...



• under H_0 , by central limit theorem:

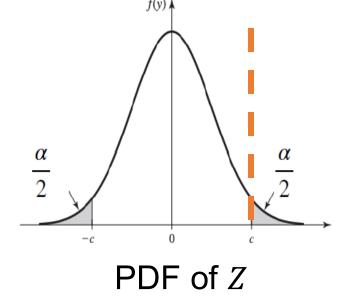
$$Z = \frac{\sqrt{n}(X_n - 168)}{8} \sim N(0, 1)$$

z-statistic: a statistic that is supposed to follow N(0,1)

Z is a valid z-statistic

c is such that $P_{Z \sim N(0,1)}(|Z| \ge c) = \alpha$

$$\Rightarrow c = \Phi^{-1} \left(1 - \frac{\alpha}{2} \right)$$



$$\alpha = 0.05 \Rightarrow c = \Phi^{-1}(0.975) = \text{st.norm.ppf}(0.975) = 1.96$$

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, test the hypothesis

$$H_0$$
: $\mu = 168$, H_1 : $\mu \neq 168$

Suppose we observe 4 students' heights: 173, 181, 189, 177

We reject if
$$Z = \frac{\sqrt{n}}{8} |\bar{X}_n - 168| \ge \Phi^{-1}(0.975)$$
 This is called a z-test 1.96

From data, Z = 3, so we reject H_0 .

z-test: general case

General fact Assume that we have a set of samples $X_1, ..., X_n$ that follow $N(\mu, \sigma^2)$, test the hypothesis

$$H_0$$
: $\mu = \mu_0$, H_1 : $\mu \neq \mu_0$

with significance level α

We can use the z-test:

Reject if
$$|Z| \ge \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$$
, where $Z = \frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu_0)$

Larger $n \Rightarrow \text{more reject}$ rejection threshold r

Larger $\alpha \Rightarrow$ more reject

Larger $\sigma \Rightarrow$ less reject

General fact Assume that we have a set of samples X_1, \dots, X_n that follow $N(\mu, \sigma^2)$, test the hypothesis

$$H_0$$
: $\mu = \mu_0$,

$$H_1$$
: $\mu \neq \mu_0$

with significance level α

z-test: Reject if
$$|Z| \ge \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$$

rejection threshold r

Example $\sigma = 8$, n = 4, $X_n = 180$, use z-test to test if $\mu = 168$

$$\alpha = 0.05 \Rightarrow r = 1.96$$

reject
$$H_0$$

reject
$$H_0$$

$$Z = \frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu_0) = 3$$

$$\alpha = 0.01 \Rightarrow r = 2.58$$

reject
$$H_0$$

$$\alpha = 0.001 \Rightarrow r = 3.29$$

do not reject H_0

Other tests can be found using the same reasoning

•
$$H_0$$
: $\mu = \mu_0$, vs H_1 : $\mu \neq \mu_0$

one-sided hypothesis testing problem

•
$$H_0$$
: $\mu \le \mu_0$, vs H_1 : $\mu > \mu_0$

•
$$H_0$$
: $\mu \ge \mu_0$, vs H_1 : $\mu < \mu_0$

Reject H_0 if:

$$|Z| \ge \Phi^{-1} \left(1 - \frac{\alpha}{2}\right) \qquad Z = \frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu_0)$$

$$Z \ge \Phi^{-1}(1 - \alpha)$$

$$Z \leq \Phi^{-1}(\alpha)$$

All these are z-tests, since it uses the z-statistic $Z = \frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu_0)$

• Drawback of z-test: needs to know population stddev σ

Example Suppose the #of medical inpatient days in nursing homes follow a distribution with mean μ and variance σ^2 . We'd like to perform hypothesis test between:

$$H_0$$
: $\mu = 200$, H_1 : $\mu \neq 200$

and we observe n=18 samples with $\bar{X}_n=182.17$ and $\hat{\sigma}_n=17.72$ Should I reject H_0 ?

t-test

Example Suppose the #of medical inpatient days in nursing homes follow a distribution with mean μ and variance σ^2 . We'd like to perform hypothesis test between:

$$H_0$$
: $\mu = 200$,

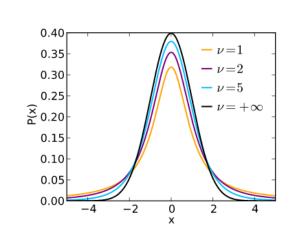
$$H_1$$
: $\mu \neq 200$

and we observe n=18 samples with $X_n=182.17$ and $\hat{\sigma}_n=17.72$

Approach When H_0 happens,

this is called a t-statistic, i.e, a statistic that follows t-distribution
$$T = \frac{\sqrt{n}(\overline{X}_n - \mu_0)}{\widehat{\sigma}_n} \sim t(n-1)$$

observed value
$$\frac{\sqrt{18}(182.17-200)}{17.72} = -1.018$$

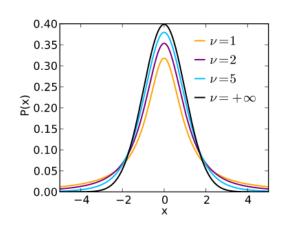


Approach We've seen that under H_0 ,

$$T = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\hat{\sigma}_n} \sim t(n-1)$$

Our test with significance α :

reject when
$$|T| > F^{-1} \left(1 - \frac{\alpha}{2}\right)$$



F is now the CDF of the t(n-1) distribution

(Note how similar this is to the z-test)

$$|T| = 1.018$$

$$F^{-1}\left(1 - \frac{\alpha}{2}\right) = 2.11$$

thus, we do not reject H_0 : $\mu = 200$

- More specifically:
 - Design experiment
 - Design test statistic W (related to hypothesis)
 - T-statistic, Z-statistic, Chi-square statistic
 - Find distribution of W under H_0
 - Collect data X_1, \dots, X_n
 - Compute w, value of W applied on the data $X_1, ..., X_n$
 - Define a rejection region *R*
 - Reject H_0 if $w \in R$, for "reasonable" rejection region R

Other tests can be found using the same reasoning

•
$$H_0$$
: $\mu = \mu_0$, vs H_1 : $\mu \neq \mu_0$

•
$$H_0$$
: $\mu \le \mu_0$, vs H_1 : $\mu > \mu_0$

•
$$H_0$$
: $\mu \ge \mu_0$, vs H_1 : $\mu < \mu_0$

Reject H_0 if:

$$|T| \ge F^{-1} \left(1 - \frac{\alpha}{2}\right)$$
 $T = \frac{\sqrt{n}}{\hat{\sigma}_n} (\bar{X}_n - \mu_0)$
F: CDF of $t(n-1)$

$$T \ge F^{-1}(1 - \alpha)$$

$$T \leq F^{-1}(\alpha)$$

All these are called t-test, since it relies on computing T, a t-statistic

t-test: a practice final question

Example Metal fibers produced, length in millimeters; use t-test to test

$$H_0$$
: $\mu \le 5.2$, H_1 : $\mu > 5.2$

n=15 fibers measured, $\bar{X}_n = 5.4$, $\hat{\sigma}_n = 0.4226$.

Shall we reject H_0 at significance 0.05?

Solution The t-test is "reject if $T \ge F^{-1}(1 - \alpha)$ "

t-statistic
$$T = \frac{\sqrt{n}}{\widehat{\sigma}_n} (\overline{X}_n - \mu_0) = 1.83$$

rejection threshold $F^{-1}(1-\alpha)=\text{t.ppf}(0.95, 14)=1.76$ we should reject