

CSC380: Principles of Data Science

Data Analysis, Collection, and Visualization 1

Xinchen Yu

Announcements

- HW01 was out (due next Wednesday, Jan 28 by 11:59pm)
- Lecture participation [self-report form](#) in course website
- [Office hours](#) start tomorrow

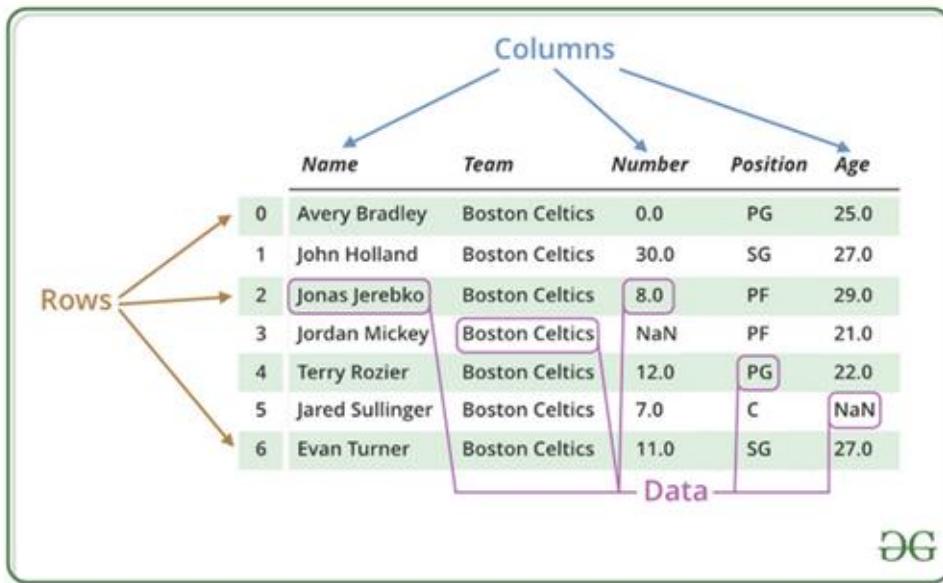
Today's plan

- Basic data processing using Pandas (after-class)
- Descriptive statistics using Pandas
- Basic data visualization

Pandas

Open source library for data handling and manipulation in high-performance environments.

Installation If you are using Anaconda package manager,


```
conda install pandas
```

Or if you are using PyPi (pip) package manager,

```
pip install pandas
```

See Pandas documentation for more detailed instructions
https://pandas.pydata.org/docs/getting_started/install.html

Primary data structure : Essentially a table

Q: how is it different from an array?

```
array([[30, 32, 35],  
       [40, 42, 45],  
       [50, 52, 55]])
```

- Dataframes' elements' data types can be mixed; an array usually store elements of same type

Create and print an entire DataFrame

```
# import pandas as pd
import pandas as pd

# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is',
       'portal', 'for', 'Geeks']

# Calling DataFrame constructor on list
df = pd.DataFrame(lst)
print(df)
```

0
0 Geeks
1 For
2 Geeks
3 is
4 portal
5 for
6 Geeks

DataFrame Example

Can create *named columns* using dictionary

```
import pandas as pd

# initialise data of lists.
data = {'Name':['Tom', 'nick', 'krish', 'jack'],
        'Age':[20, 21, 19, 18]}

# Create DataFrame
df = pd.DataFrame(data)

# Print the output.
print(df)
```

	Name	Age
0	Tom	20
1	nick	21
2	krish	19
3	jack	18

all data must have the same length

Select columns to print by name

```
# Import pandas package
import pandas as pd

# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}

# Convert the dictionary into DataFrame
df = pd.DataFrame(data)

# select two columns
print(df[['Name', 'Qualification']])
```

	Name	Qualification
0	Jai	Msc
1	Princi	MA
2	Gaurav	MCA
3	Anuj	Phd

access columns by name, not the column index!

DataFrame : Selecting Columns

```
[35]: import pandas as pd  
data = {'Name': ['tom', 'nick'], 'Age': [10,20]}  
df = pd.DataFrame(data)
```

pandas.Series

```
class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False,  
fastpath=False)
```

[source]

```
[36]: df[['Name']]
```

One-dimensional ndarray with axis labels (including time series).

```
[36]:
```

Name
0 tom
1 nick

Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).

```
[37]: df['Name']
```

```
[37]: 0      tom  
1      nick  
Name: Name, dtype: object
```

still a DataFrame

```
[38]: type(df[['Name']]), type(df['Name'])
```

essentially, a DataFrame's single
row or column

```
[38]: (pandas.core.frame.DataFrame, pandas.core.series.Series)
```

DataFrame : Selecting Rows

Use df.loc to access certain rows

```
import pandas as pd
import numpy as np

# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}

# Convert the dictionary into DataFrame
df = pd.DataFrame(data)

# Print rows 1 & 2
row = df.loc[1:2]
print(row)
```

Output

	Name	Age	Address	Qualification
1	Princi	24	Kanpur	MA
2	Gaurav	22	Allahabad	MCA

(still a DataFrame)

1:2 includes 2! This is different from Python array indexing

DataFrame : Selecting Rows

```
[6]: import pandas as pd  
data = {'Name': ['tom', 'nick'], 'Age': [10,20]}  
df = pd.DataFrame(data)
```

```
[19]: df.loc[1:1]
```

```
[19]:   Name  Age  
1    nick   20
```

```
[20]: df.loc[1]
```

```
[20]: Name    nick  
      Age     20  
      Name: 1, dtype: object
```

```
[21]: type(df.loc[1:1]), type(df.loc[1])
```

```
[21]: (pandas.core.frame.DataFrame, pandas.core.series.Series)
```

- df.loc[1:1] is DataFrame object
- df.loc[1] is a series

DataFrame : Selecting Rows

`head()` and `tail()` select rows from beginning / end

handy when we would like to get a sense of what a big table looks like

```
import pandas as pd
import numpy as np

# Define a dictionary containing employee data
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age':[27, 24, 22, 32],
        'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification':['Msc', 'MA', 'MCA', 'Phd']}

# Convert the dictionary into DataFrame
df = pd.DataFrame(data)

# Print first / last rows
first2 = df.head(2)
last2 = df.tail(2)
print(first2)
print('\n', last2)
```

Output

	Name	Age	Address	Qualification
0	Jai	27	Delhi	Msc
1	Princi	24	Kanpur	MA

	Name	Age	Address	Qualification
2	Gaurav	22	Allahabad	MCA
3	Anuj	32	Kannauj	Phd

Reading Data from Files

Easy reading / writing of standard formats

```
df = pd.read_json("data.json")
print(df)
df.to_csv("data.csv", index=False)
df_csv = pd.read_csv("data.csv")
print(df_csv.head(2))
```

Json format: e.g. X(twitter) API

```
{
    "fruits": ["apple", "banana", "cherry"],
    "numbers": [1, 2, 3, 4],
    "mixed": [true, "hello", null]
}
```

CSV format (comma separated values)

```
Name,Age,City
Alice,25,New York
Bob,30,San Francisco
Charlie,22,Chicago
```

index ↓

Output

	Duration	Pulse	Maxpulse	Calories
0	60	110	130	409.1
1	60	117	145	479.0
2	60	103	135	340.0
3	45	109	175	282.4
4	45	117	148	406.0
..
164	60	105	140	290.8
165	60	110	145	300.4
166	60	115	145	310.2
167	75	120	150	320.4
168	75	125	150	330.4

[169 rows x 4 columns]

	Duration	Pulse	Maxpulse	Calories
0	60	110	130	409.1
1	60	117	145	479.0

Data Type Conversions

Working with DataFrames outside of Pandas can be tricky

```
df['Duration']
```

Q: is this a DataFrame object or Series object?

A: a Series object

We can easily convert a Series to built-in types, e.g., a list.

```
0      60
1      60
2      60
3      45
4      45
      ..
164    60
165    60
166    60
167    75
168    75
Name: Duration, Length: 169, dtype: int64
```

```
L = df['Duration'].to_list()  
print(L)
```

Data Type Conversions

Or, to a numpy array

```
[6]: import pandas as pd  
data = {'Name': ['tom', 'nick'], 'Age': [10,20]}  
df = pd.DataFrame(data)
```

```
[29]: df
```

```
[29]:   Name  Age  
0     tom    10  
1    nick    20
```

```
[31]: df.to_numpy()
```

```
[31]: array([['tom', 10],  
           ['nick', 20]], dtype=object)
```

```
[40]: df['Name'].to_numpy()
```

```
[40]: array(['tom', 'nick'], dtype=object)
```

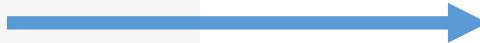
`to_numpy()`: can take Series and DataFrame objects as input

Numpy: Python library for scientific computing

Summary Statistics in Pandas

17

Compute summary statistics on Pandas Series


```
print('Min: ', df['Duration'].min())
print('Max: ', df['Duration'].max())
print('Median: ', df['Duration'].median())
```

```
Min: 15
Max: 300
Median: 60.0
```

```
60      79
45      35
30      16
20       9
90       8
150      4
120      3
180      3
15       2
75       2
160      2
210      2
270      1
25       1
300      1
80       1
Name: Duration, dtype: int64
```

Can also count occurrences of unique values,

```
df['Duration'].value_counts()
```



```
s = df['Duration'].value_counts()
s[60]=79.
```

Summary Statistics

Compute summary statistics on each column of Dataframe

```
[42]: import pandas as pd  
data = {'Name': ['tom', 'nick'], 'Age': [10,20], 'Height': [6.2, 5.5]}  
df = pd.DataFrame(data)  
df
```

```
[42]:   Name  Age  Height  
0     tom    10      6.2  
1    nick    20      5.5
```

```
[43]: df.describe()
```

```
[43]:      Age      Height  
count  2.000000  2.000000  
mean  15.000000  5.850000  
std   7.071068  0.494975  
min   10.000000  5.500000  
25%  12.500000  5.675000  
50%  15.000000  5.850000  
75%  17.500000  6.025000  
max  20.000000  6.200000
```

use describe() to get a summary of the data

Many database operations are available

- You can specify index, which can speed up some operations
- You can do 'join'
- You can do 'where' clause to filter the data
- You can do 'group by'

Doing it by yourself helps a lot!

Search the docs ...

[Installation](#)

[Package overview](#)

Getting started tutorials

^

[What kind of data does pandas handle?](#)

[How do I read and write tabular data?](#)

[How do I select a subset of a `DataFrame` ?](#)

[How to create plots in pandas?](#)

[How to create new columns derived from existing columns?](#)

[How to calculate summary statistics?](#)

[How to reshape the layout of tables?](#)

How to combine data from multiple tables?

[How to handle time series data with ease?](#)

[How to manipulate textual data?](#)

Descriptive Statistics (using Pandas)

Descriptive Statistics Overview

- Given a data array, oftentimes useful to summarize it using some of its key features
 - Range**
 - Histogram**
 - Mean**
 - Median**
 - Mode**

Range

- Difference between highest (maximum) and lowest (minimum) values
- $[\min, \max]$ is called the *range interval*

Example what is the range of the following dataset?

4, 7, 2, 9, 12

Max: 12

Min: 2

=> Range interval = $[2, 12]$, Range = $12 - 2 = 10$

Histogram

Split the *range interval* into equally-sized bins and report counts in each bin.

Example Taking the ages of the presidents of the United States at the time of their inauguration (in total 44 points)

57,61,57,57,58,57,61,54,68,51, .. 47,70

Bins: (40, 45], (45, 50], (50, 55], (55, 60], (60, 65], (65, 70]

Histogram

Counts in different bins

(40, 45]	(45, 50]	(50, 55]	(55, 60]	(60, 65]	(65, 70]
2	8	16	9	7	3

We can also visualize the histogram using a bar plot:

Mean

- Average of the data x_1, \dots, x_n
- In formula:

$$\bar{x} = \frac{1}{n}(x_1 + \dots + x_n) =: \frac{1}{n} \sum_{i=1}^n x_i$$

Example heights of 3 students are 1.71, 1.84, 1.64 (m)

their average height $\bar{x} = \frac{1}{3}(1.71+1.84+1.63) = 1.73$ (m)

For data x_1, x_2, \dots, x_N sort the data,

$$x_{(1)}, x_{(2)}, \dots, x_{(n)}$$

- Notation $x_{(i)}$ means the *i-th lowest* value, e.g. $x_{(i-1)} \leq x_{(i)} \leq x_{(i+1)}$
- $x_{(1)}, x_{(2)}, \dots, x_{(n)}$ are called *order statistics* not summary info, but rather a transformation

If n is **odd** then find the middle datapoint,

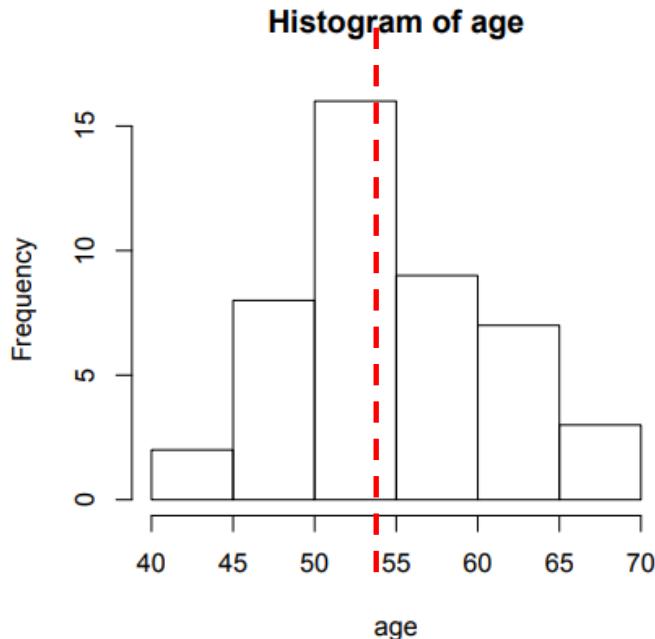
$$\text{median}(x_1, \dots, x_n) = x_{((n+1)/2)}$$

If n is **even** then average between both middle datapoints,

$$\text{median}(x_1, \dots, x_n) = \frac{1}{2} (x_{(n/2)} + x_{(n/2+1)})$$

What is the median of the following data?

1, 2, 3, 4, 5, 6, 8, 9 **4.5**


What is the median of the following data?

1, 2, 3, 4, 5, 6, 8, 100 **4.5**

Median is *robust* to outliers

Median

- *Roughly speaking*, median is the point where half of the population is below it and half of the population is above it

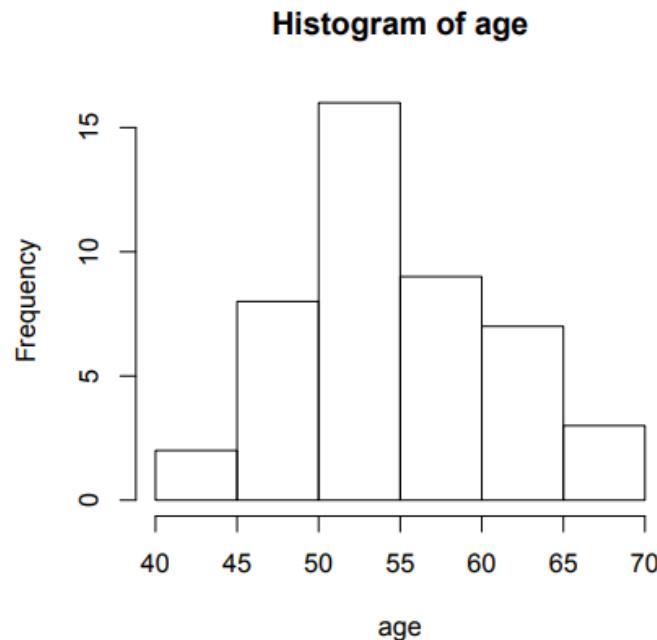
Mode

- Value of highest number of appearances

Example what is the mode of the following dataset?

1,1,2,3,7,8,8,8,9

Count of 8: 3


Count of 1: 2

Counts of other numbers: 1

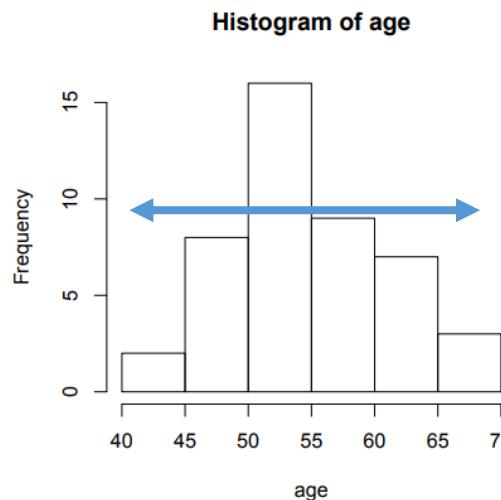
=> Mode = 8

Mode

- *Roughly speaking*, mode is the location of the histogram with the tallest bar

Measuring Spread: sample variance

Another way to measure the spread is the sample variance,


$$\sigma^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2$$

Biased

Sample mean

$$s^2 = \frac{1}{N-1} \sum_{i=1}^N (x_i - \bar{x})^2$$

Unbiased

Sample Variance

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2$$

Example calculate the sample variance of sample

$$4, 9, 10, 6, 6$$

Sample mean: $\bar{x} = \frac{4+9+10+6+6}{5} = 7$

5 terms in the summation:

$$(4 - 7)^2, (9 - 7)^2, (10 - 7)^2, (6 - 7)^2, (6 - 7)^2$$
$$9, \quad 4, \quad 9, \quad 1, \quad 1$$

$$\sigma^2 = \frac{1}{5} (9 + 4 + 9 + 1 + 1) = 4.8$$

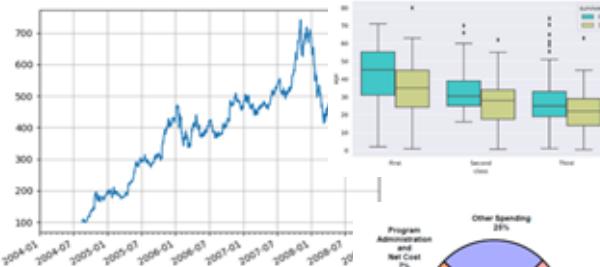
Sample variance

- When is the variance of a sample zero?

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^N (x_i - \bar{x})^2$$

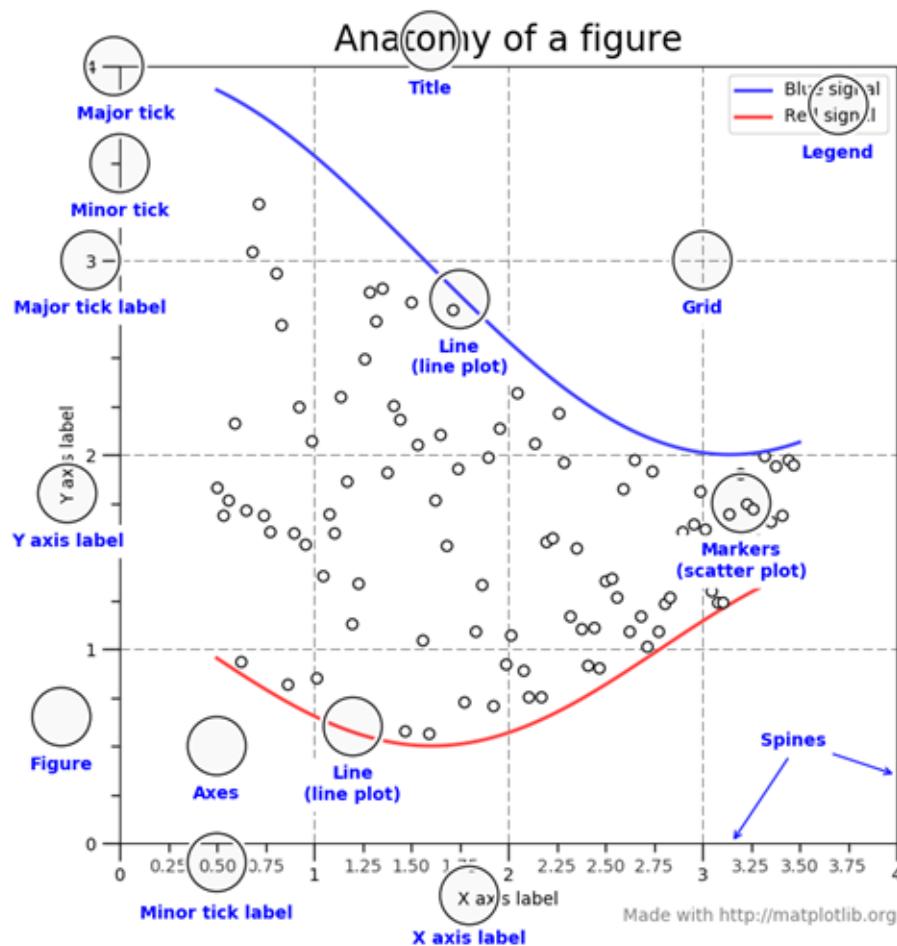
- Variance of a sample is zero if all x_i 's are identical, e.g.
5, 5, .., 5
- Variance measures the degree of “fluctuations” in the data
- Standard deviation: square root of variance, σ

Data Visualization


Data Analysis, Exploration, and Visualization

141	137	134	134	132	130	129	129	131	135	130	128	129	126	128	128	130
138	136	134	134	135	133	131	129	132	129	133	128	130	128	127	129	131
135	135	134	133	133	132	130	128	132	136	134	130	131	131	132	132	133
133	134	133	132	131	130	130	131	131	129	134	136	130	134	137	134	134
134	136	134	134	133	132	136	138	136	127	135	137	132	136	140	135	139
137	135	136	138	137	135	137	143	142	132	136	138	135	137	138	138	142
139	135	135	138	138	134	135	141	143	133	133	134	139	135	133	130	140
136	137	137	138	141	140	142	144	143	142	143	142	137	139	137	135	136
137	138	136	136	138	140	142	143	140	144	143	140	139	139	140	138	137
137	139	137	136	136	137	140	145	146	143	140	141	142	142	143	143	143
137	140	141	139	138	136	135	137	143	144	142	139	142	146	145	147	146
140	144	144	149	141	137	139	137	139	139	139	139	143	149	146	147	147
145	148	147	145	145	140	139	142	136	139	140	142	147	147	146	147	149
146	148	147	144	143	141	140	143	137	138	142	145	146	145	145	146	147
145	147	146	143	142	140	140	143	138	140	143	143	143	141	143	148	142
145	145	144	144	143	141	141	142	142	145	146	145	144	141	143	150	144
144	143	142	143	149	142	142	144	143	144	143	144	148	144	142	147	145
146	145	144	143	143	143	146	146	144	144	141	146	157	158	144	143	148
149	148	145	144	143	143	144	145	144	146	142	149	167	168	155	146	151
150	149	147	145	142	142	143	143	145	147	143	147	166	175	164	151	152
150	150	149	147	145	145	145	147	148	145	142	154	165	160	148	150	
152	152	150	149	150	150	150	149	151	151	150	147	146	152	153	147	151
152	153	153	152	151	151	151	150	152	152	152	156	155	148	149	153	152
152	152	152	152	152	151	151	151	151	152	152	152	153	152	151	152	154
152	152	152	152	152	152	151	151	152	152	152	153	152	151	152	153	154
153	152	153	153	153	153	153	153	154	154	153	153	152	152	150	152	154
153	153	153	153	153	153	153	154	154	154	154	153	153	153	152	153	155
153	153	152	153	154	154	154	154	153	154	154	153	153	153	154	154	157
153	152	152	152	154	155	155	155	153	155	155	154	152	152	152	154	159

Encoding


Iterate

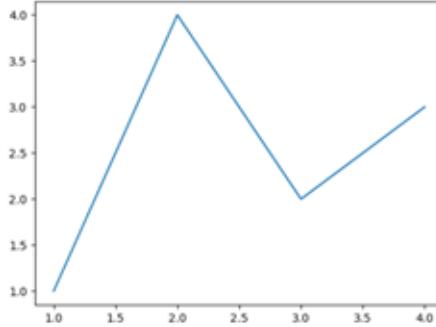
Understanding

Visual Perception

components of a Matplotlib figure

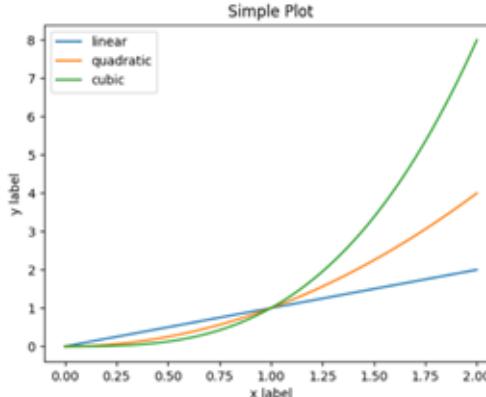
Documentation + tutorials:

<https://matplotlib.org/>


Data visualization in Python...

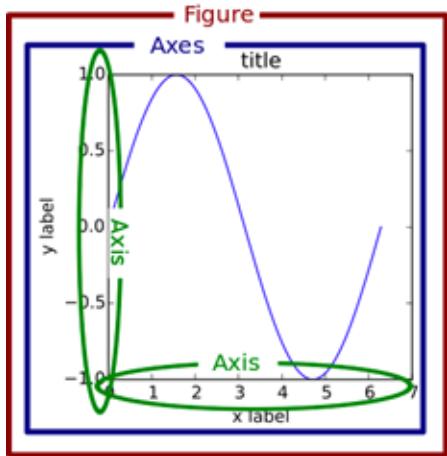

```
import matplotlib.pyplot as plt
import numpy as np
```

Create a simple figure

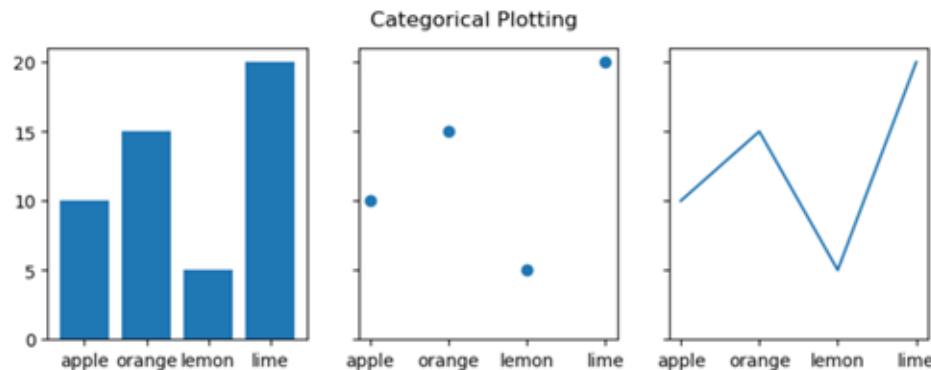

```
fig, ax = plt.subplots() # Create a figure containing a single axes.
ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the axes.
```


A more complicated plot...

```
x = np.linspace(0, 2, 100)


# Note that even in the OO-style, we use `pyplot.figure` to create the figure.
fig, ax = plt.subplots() # Create a figure and an axes.
ax.plot(x, x, label='linear') # Plot some data on the axes.
ax.plot(x, x**2, label='quadratic') # Plot more data on the axes...
ax.plot(x, x**3, label='cubic') # ... and some more.
ax.set_xlabel('x label') # Add an x-label to the axes.
ax.set_ylabel('y label') # Add a y-label to the axes.
ax.set_title("Simple Plot") # Add a title to the axes.
ax.legend() # Add a legend.
```


Axes: entire area of plot


Axis: horizontal or vertical (2d)

`subplot()` function: draw multiple plots in one figure


```
data = {'apple': 10, 'orange': 15, 'lemon': 5, 'lime': 20}
names = list(data.keys())
values = list(data.values())

fig, axs = plt.subplots(1, 3, figsize=(9, 3), sharey=True)
axs[0].bar(names, values)
axs[1].scatter(names, values)
axs[2].plot(names, values)
fig.suptitle('Categorical Plotting')
```


Aside: generating random data

- Numpy: Python lib for scientific computing
- It has general-purpose random number generator *rand*


```
import numpy as np

# Generate an array with 5 random numbers between 0 and 1
random_array_1d = np.random.rand(5)

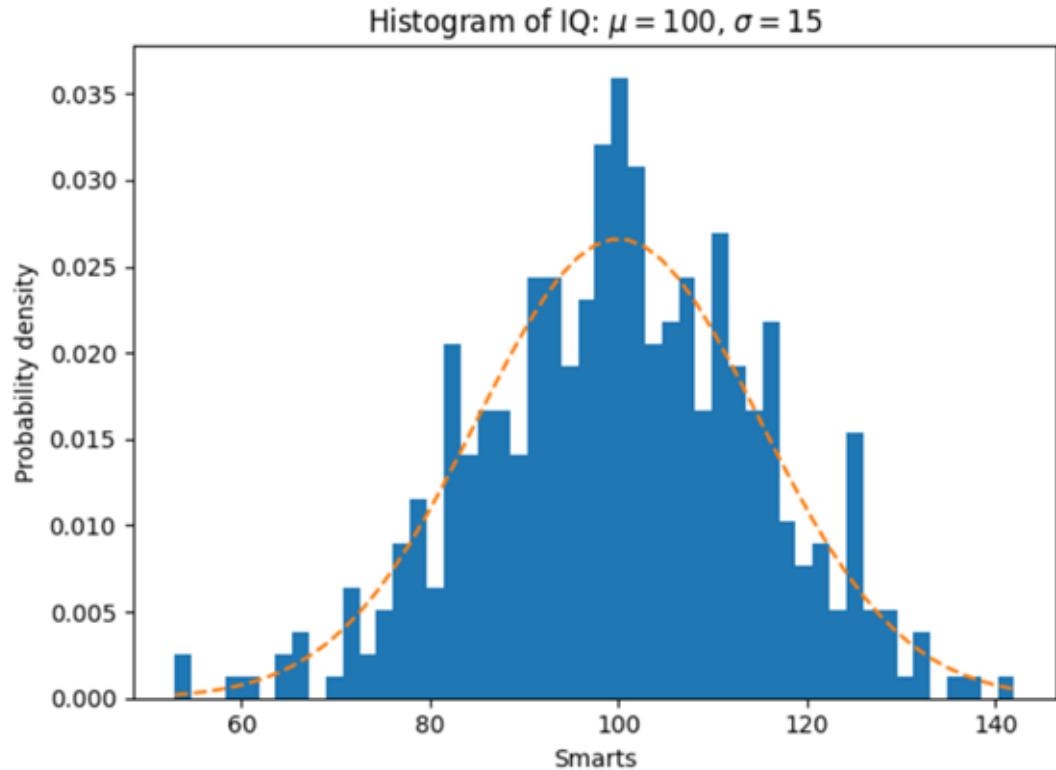
# Print the generated random array
print(random_array_1d)
```

```
[0.70620389 0.38344751 0.12382312 0.85396815 0.3684137] # This will vary each time
```

Histogram

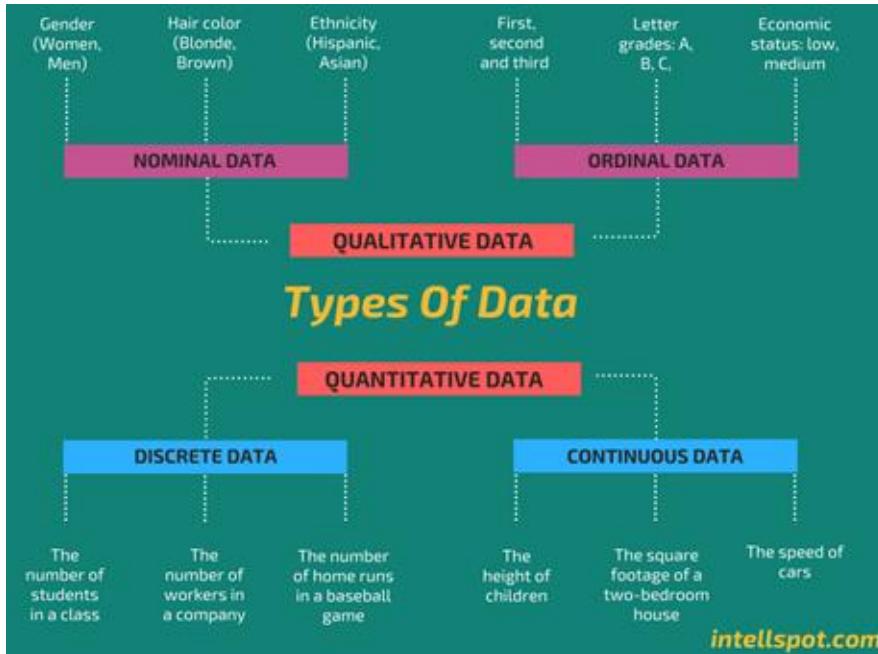
```
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(19680801)


# example data
mu = 100 # mean of distribution
sigma = 15 # standard deviation of distribution
x = mu + sigma * np.random.randn(437)

num_bins = 50
    Generate 437 random data; randn similar to rand
fig, ax = plt.subplots()

# the histogram of the data
n, bins, patches = ax.hist(x, num_bins, density=True)


# add a 'best fit' line
y = ((1 / (np.sqrt(2 * np.pi) * sigma)) *
     np.exp(-0.5 * (1 / sigma * (bins - mu))**2))
ax.plot(bins, y, '--')
ax.set_xlabel('Smarts')
ax.set_ylabel('Probability density')
ax.set_title(r'Histogram of IQ: $\mu=100$, $\sigma=15$')

# Tweak spacing to prevent clipping of ylabel
fig.tight_layout()
plt.show()
```


Types of Data

Data come in many forms, each requiring different approaches & models

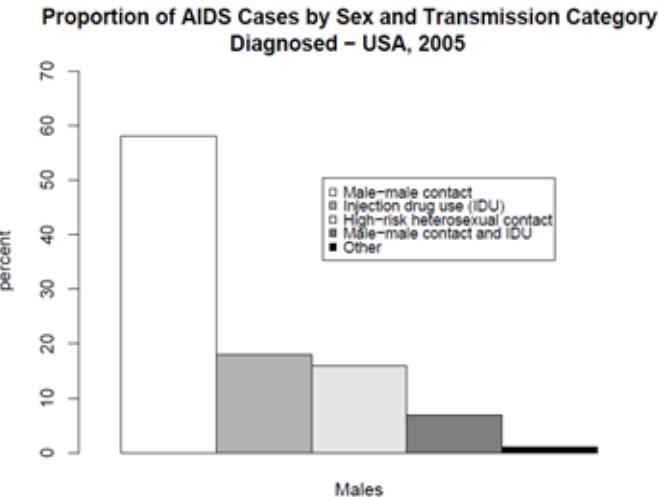
Qualitative or categorical: can partition values into classes

Quantitative: can perform arithmetic operations (e.g., addition, subtraction, ordering)

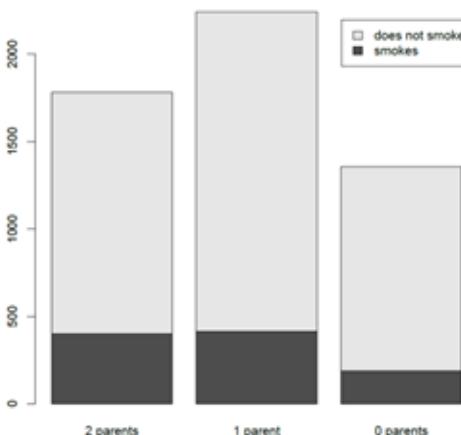
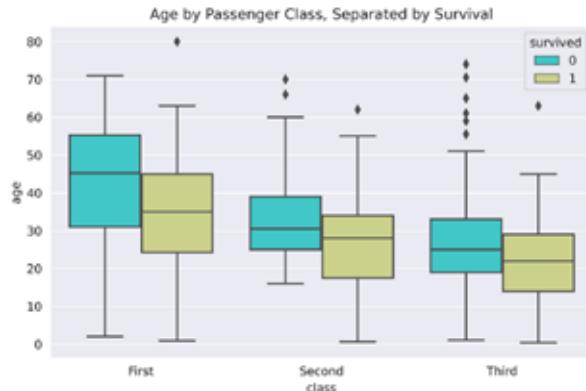
*We often refer to different types of data as **variables***

Examples

- Blood Type: A, B, AB, or O
- Political Party: Democrat, Republican, etc.
- Word Identity: NP, VP, N, V, Adj, Adv, etc.
- Roll of a die: 1,2,3,4,5 or 6



Numerical data can be categorical depending on context



Conversion: Quantitative data can be converted to categorical by defining ranges:

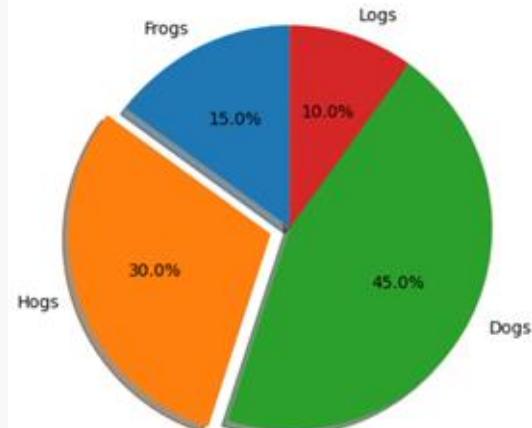
- Small [0, 10cm), Medium [10, 100cm), Large [100cm, 1m), XL [1m, -)
- Low [less than -100dB), Moderate [-100dB, -50dB), Loud [over -50dB)

Visualizing Categorical Variables

	student smokes	student does not smoke	total
2 parents smoke	400	1380	1780
1 parent smokes	416	1823	2239
0 parents smoke	188	1168	1356
total	1004	4371	5375

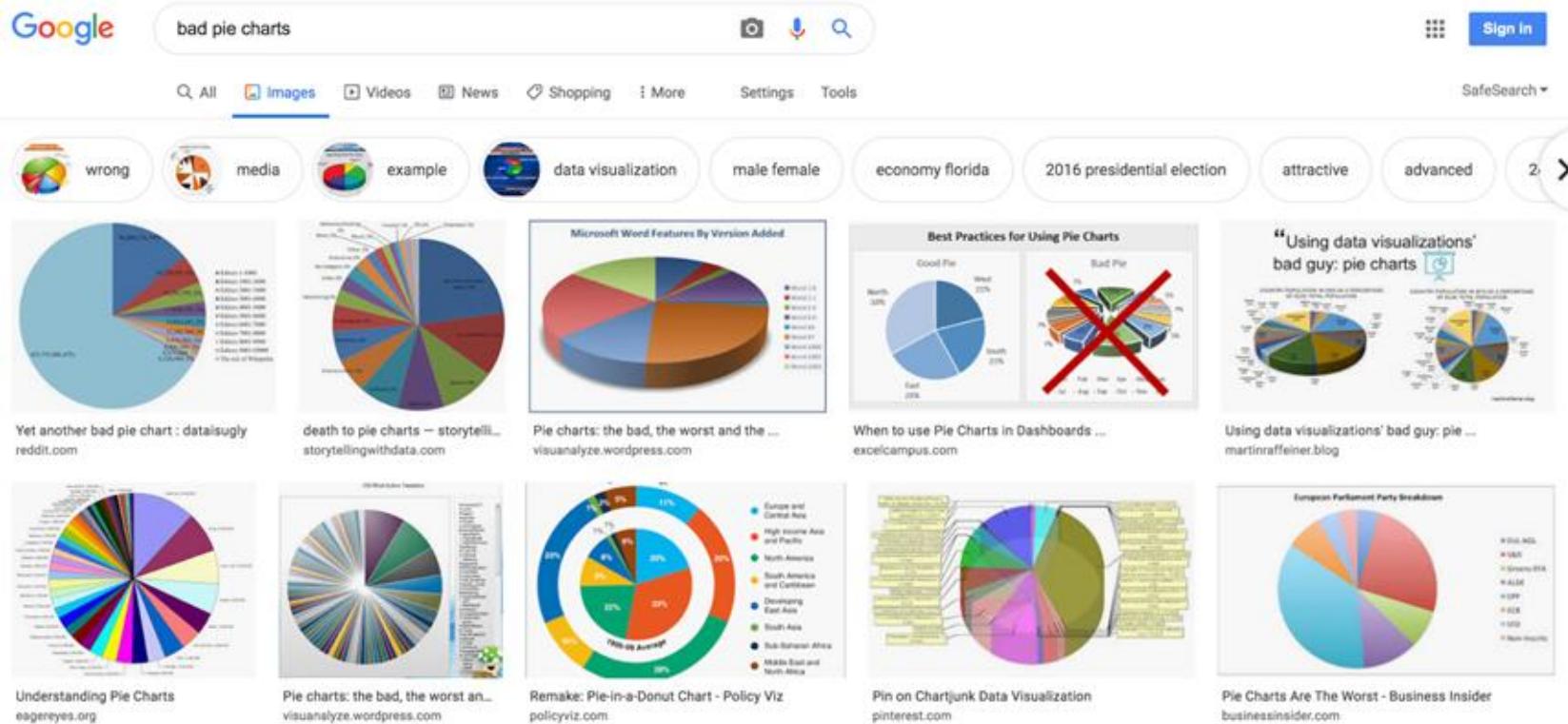
Pie Chart

Circular chart divided into sectors, illustrating relative magnitudes in frequencies or percentage.


In a pie chart, *the area is proportional to the quantity it represents*

```
import matplotlib.pyplot as plt

# Pie chart, where the slices will be ordered and plotted counter-clockwise:
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs')


fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
         shadow=True, startangle=90)
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.

plt.show()
```


Be careful with using pie charts:

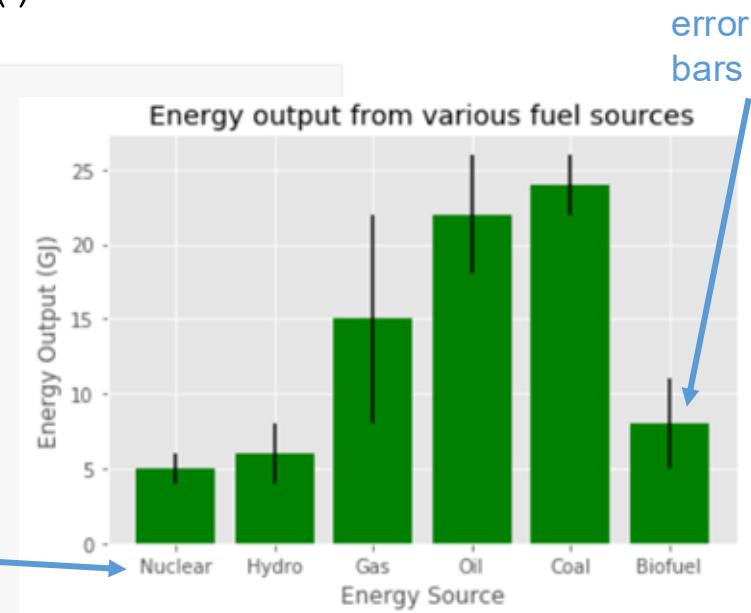
- Maybe unsuitable if too many sectors are present
- 3d charts can distort the sizes of the sectors; using 2d is recommended

Bar Chart

We perceive differences in height / length better than area...

`plt.bar()`

```
x = ['Nuclear', 'Hydro', 'Gas', 'Oil', 'Coal', 'Biofuel']
energy = [5, 6, 15, 22, 24, 8]
variance = [1, 2, 7, 4, 2, 3]


x_pos = [i for i, _ in enumerate(x)]

plt.bar(x_pos, energy, color='green', yerr=variance)
plt.xlabel("Energy Source")
plt.ylabel("Energy Output (GJ)")
plt.title("Energy output from various fuel sources")

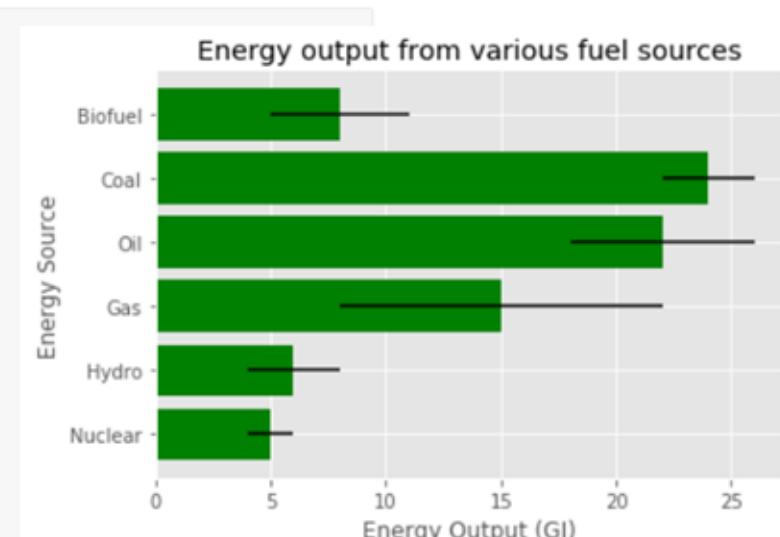
plt.xticks(x_pos, x)

plt.show()
```

x-axis
ticks

Horizontal version

plt.barh()


```
x = ['Nuclear', 'Hydro', 'Gas', 'Oil', 'Coal', 'Biofuel']
energy = [5, 6, 15, 22, 24, 8]
variance = [1, 2, 7, 4, 2, 3]

x_pos = [i for i, _ in enumerate(x)]

plt.barh(x_pos, energy, color='green', xerr=variance)
plt.ylabel("Energy Source")
plt.xlabel("Energy Output (GJ)")
plt.title("Energy output from various fuel sources")

plt.yticks(x_pos, x)

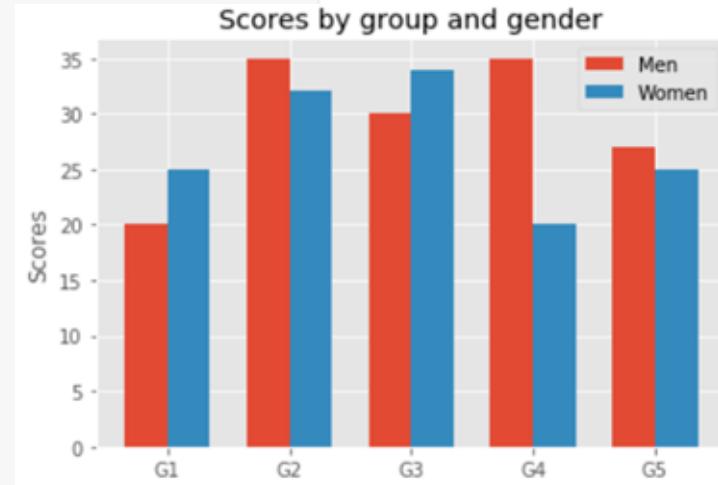
plt.show()
```


[Source: <https://benalexkeen.com/bar-charts-in-matplotlib/>]

Bar Chart

49

Multiple groups of bars...


```
import numpy as np

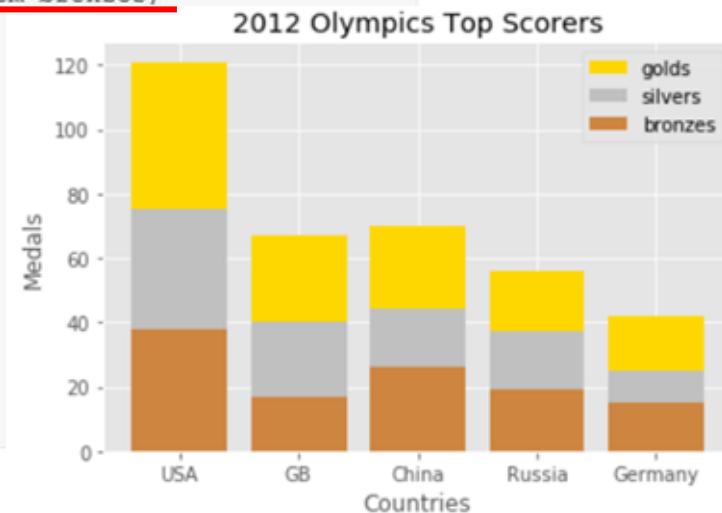
N = 5
men_means = (20, 35, 30, 35, 27)
women_means = (25, 32, 34, 20, 25)

ind = np.arange(N) // [1,2,3,4,5]
width = 0.35          width of bar
plt.bar(ind, men_means, width, label='Men')
plt.bar(ind + width, women_means, width,
        label='Women')  add the offset here

plt.ylabel('Scores')
plt.title('Scores by group and gender')

plt.xticks(ind + width / 2, ('G1', 'G2', 'G3', 'G4', 'G5'))
plt.legend(loc='best')
plt.show()
```


Stacked Bar Chart


50

```
countries = ['USA', 'GB', 'China', 'Russia', 'Germany']
bronzes = np.array([38, 17, 26, 19, 15])
silvers = np.array([37, 23, 18, 18, 10])
golds = np.array([46, 27, 26, 19, 17])
ind = [x for x, _ in enumerate(countries)]

plt.bar(ind, golds, width=0.8, label='golds', color='gold', bottom=silvers+bronzes)
plt.bar(ind, silvers, width=0.8, label='silvers', color='silver', bottom=bronzes)
plt.bar(ind, bronzes, width=0.8, label='bronzes', color='#CD853F')

plt.xticks(ind, countries)
plt.ylabel("Medals")
plt.xlabel("Countries")
plt.legend(loc="upper right")
plt.title("2012 Olympics Top Scorers")

plt.show()
```

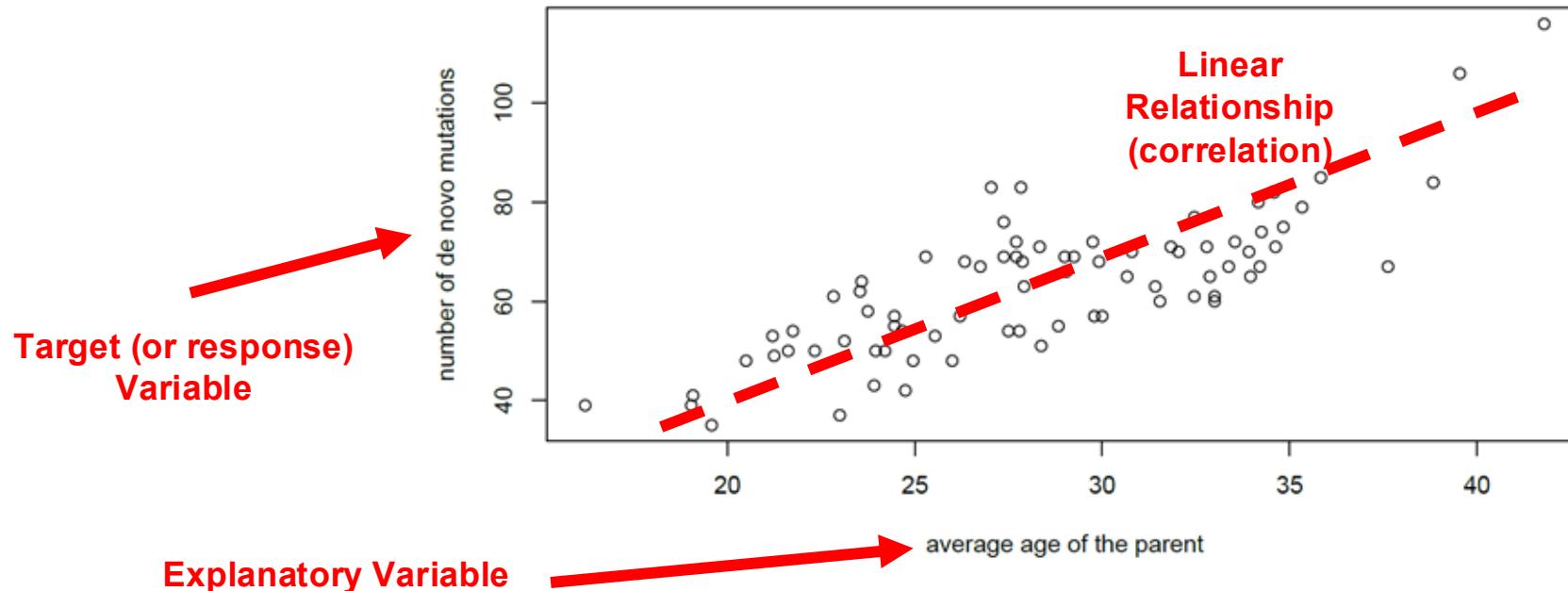

[Source: <https://benalexkeen.com/bar-charts-in-matplotlib/>]

Two-Way Table

When there are two categorical variables:

Also called contingency table or cross tabulation table...

Example We asked 5375 students and collected their smoking status and their parents' smoking status, and summarize it as:

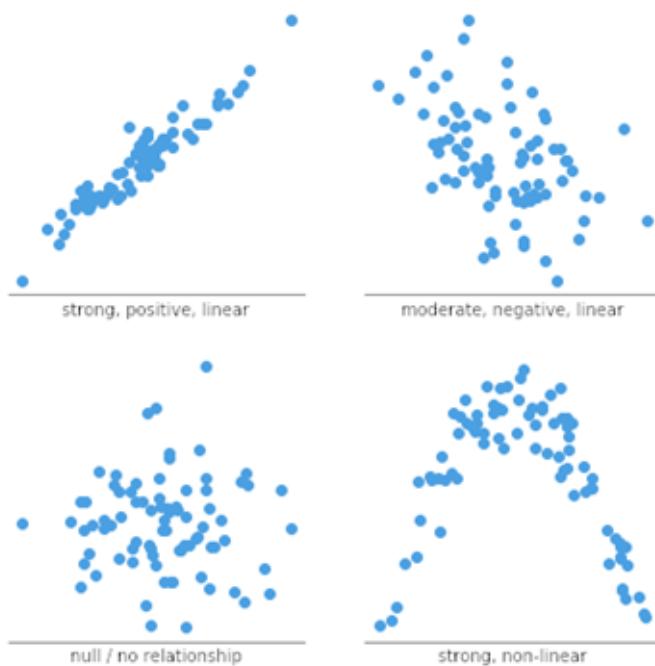

	student smokes	student does not smoke	total
2 parents smoke	400	1380	1780
1 parent smokes	416	1823	2239
0 parents smoke	188	1168	1356
total	1004	4371	5375

Q: Is there any correlation between parents' and child's smoking statuses?
Are students with 2 parents smoking more likely to smoke (compared with general students)?

Scatterplot

52

Compares relationship between two quantitative variables...



Useful for many prediction tasks:

e.g. house price prediction, salary prediction, stock price prediction, etc.

Scatterplot

Compares relationship between two quantitative variables...

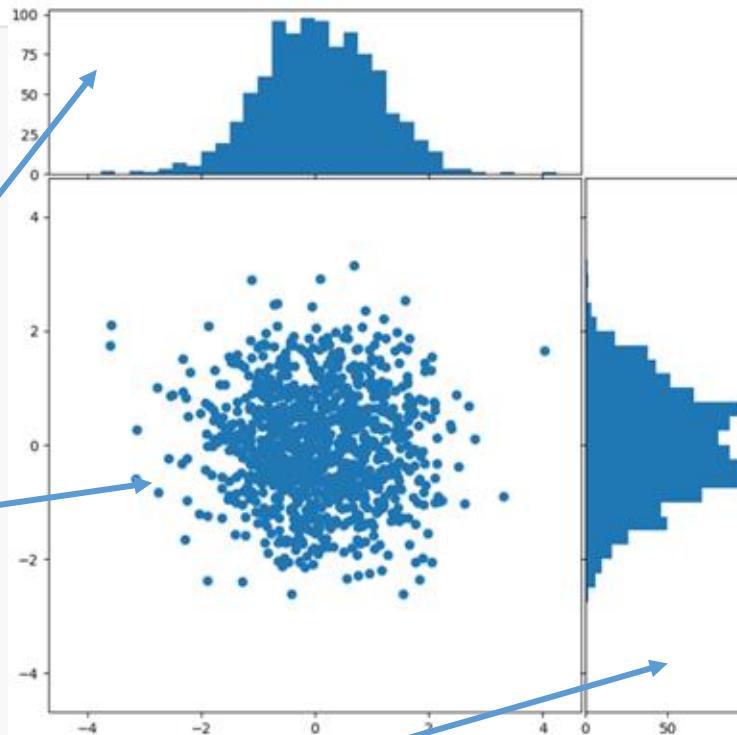
Relationship can also be:

- Nonlinear (e.g. “curvy”)
- Clustered or grouped

Scatterplot + Histogram

```
import numpy as np
import matplotlib.pyplot as plt

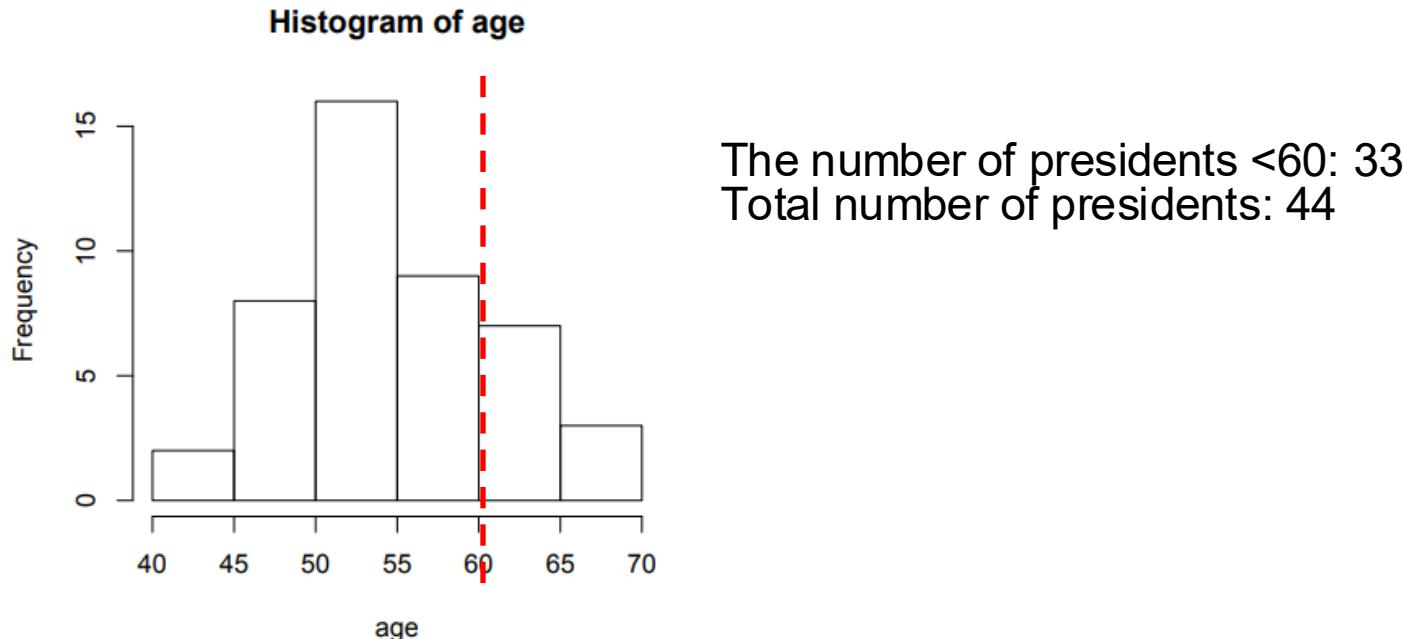
# Fixing random state for reproducibility
np.random.seed(19680801)


# some random data
x = np.random.randn(1000)
y = np.random.randn(1000)

def scatter_hist(x, y, ax, ax_histx, ax_histy):
    # no labels
    ax_histx.tick_params(axis="x", labelbottom=False)
    ax_histy.tick_params(axis="y", labelleft=False)

    # the scatter plot:
    ax.scatter(x, y)

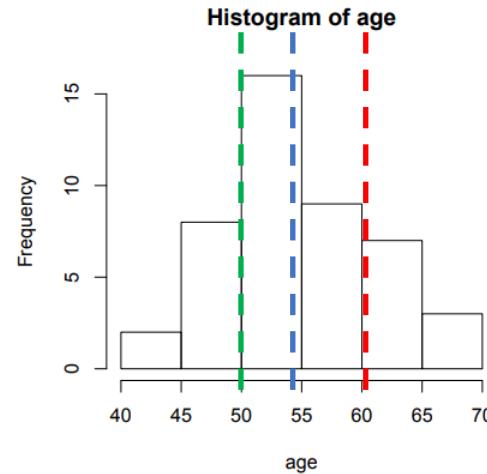
    # now determine nice limits by hand:
    binwidth = 0.25
    xymax = max(np.max(np.abs(x)), np.max(np.abs(y)))
    lim = (int(xymax/binwidth) + 1) * binwidth


    bins = np.arange(-lim, lim + binwidth, binwidth)
    ax_histx.hist(x, bins=bins)
    ax_histy.hist(y, bins=bins, orientation='horizontal')
```


Full Code:
https://matplotlib.org/stable/gallery/lines_bars_and_markers/scatter_hist.html

Percentile / Quartile

Question Is 60yrs old for a US president? Why or why not?


About 75% of presidents younger than 60yrs old
=> 60yrs old = 0.75 Quantile or 75th Percentile

Measuring Spread

Quartile divide data into 4 equally-sized bins,

- **1st Quartile** : Lowest 25% of data
- **2nd Quartile** : Median (lowest 50% of data)
- **3rd Quartile** : 75% of data is below 3rd quartile
- **4th Quartile** : The maximum value

Compute using `np.quantile()` :


```
x = np.random.rand(10) * 100
q = np.quantile(x, (0.25, 0.5, 0.75))
np.set_printoptions(precision=1)
print("X: ", x)
print("Q: ", q)
```

X: [90.7 73.9 31.7 2.8 56.3 95.7 15.6 75.8 4.1 19.5]
Q: [16.6 44. 75.3]

Box Plot

57

Interquartile-Range (IQR) Measures interval containing 50% of data

$$IQR = Q3 - Q1$$

Region of *typical* data

Box Plot

48 52 57 61 64 72 76 77 81 85 88

Median

48 52 57 61 64 72 76 77 81 85 88

48 52 57 61 64 72 72 76 77 81 85 88

First half

Second half

Q1

48 52 57 61 64 72 72 76 77 81 85 88

First half

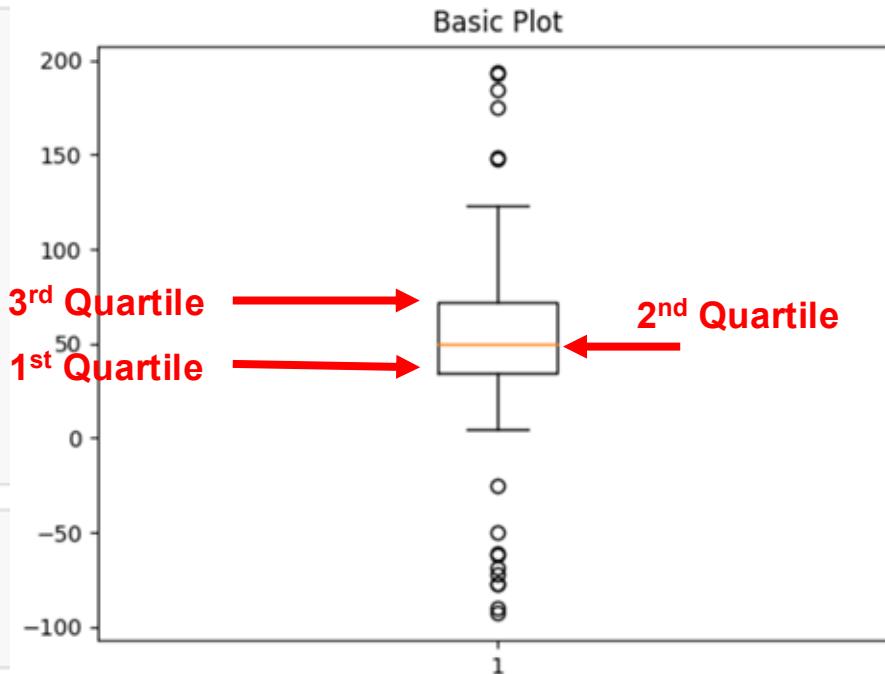
Q3

Second half

$$Q1 = \frac{57 + 61}{2} = 59$$

$$Q3 = \frac{77 + 81}{2} = 79$$

$$\begin{aligned} IQR &= Q3 - Q1 \\ IQR &= 79 - 59 = 20 \end{aligned}$$


Box Plot

```
import numpy as np
import matplotlib.pyplot as plt

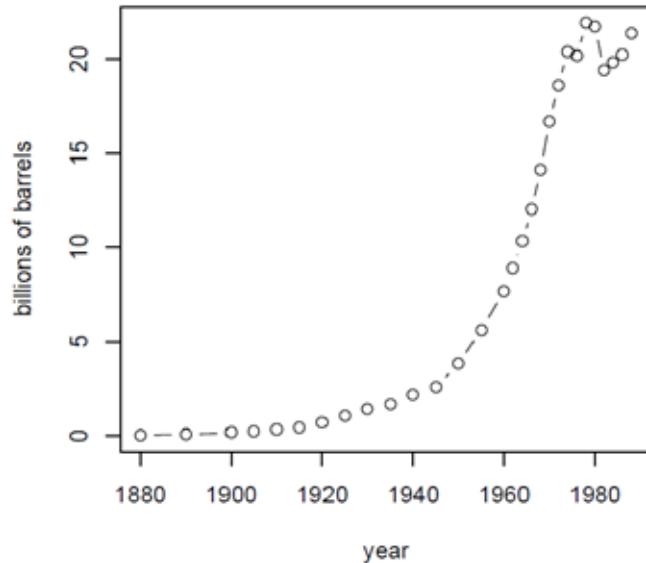
# Fixing random state for reproducibility
np.random.seed(19680801)

# fake up some data
spread = np.random.rand(50) * 100
center = np.ones(25) * 50
flier_high = np.random.rand(10) * 100 + 100
flier_low = np.random.rand(10) * -100
data = np.concatenate((spread, center, flier_high, flier_low))
```

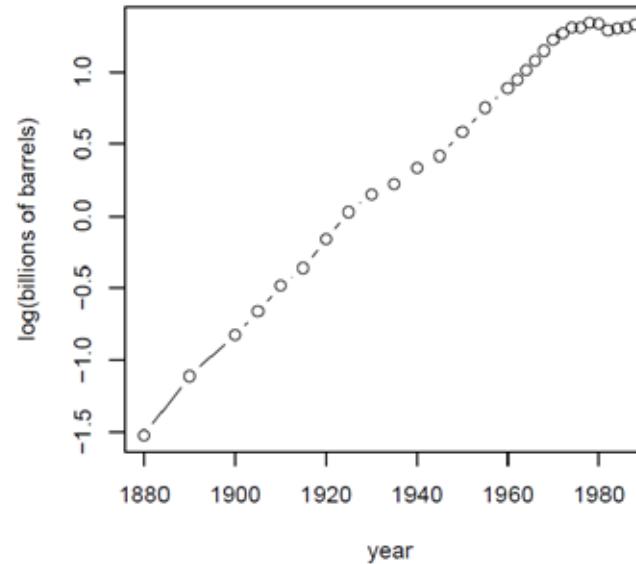
```
fig1, ax1 = plt.subplots()
ax1.set_title('Basic Plot')
ax1.boxplot(data)
```


Logarithm Scale

60


Changing limits and base of y-scale highlights different aspects...

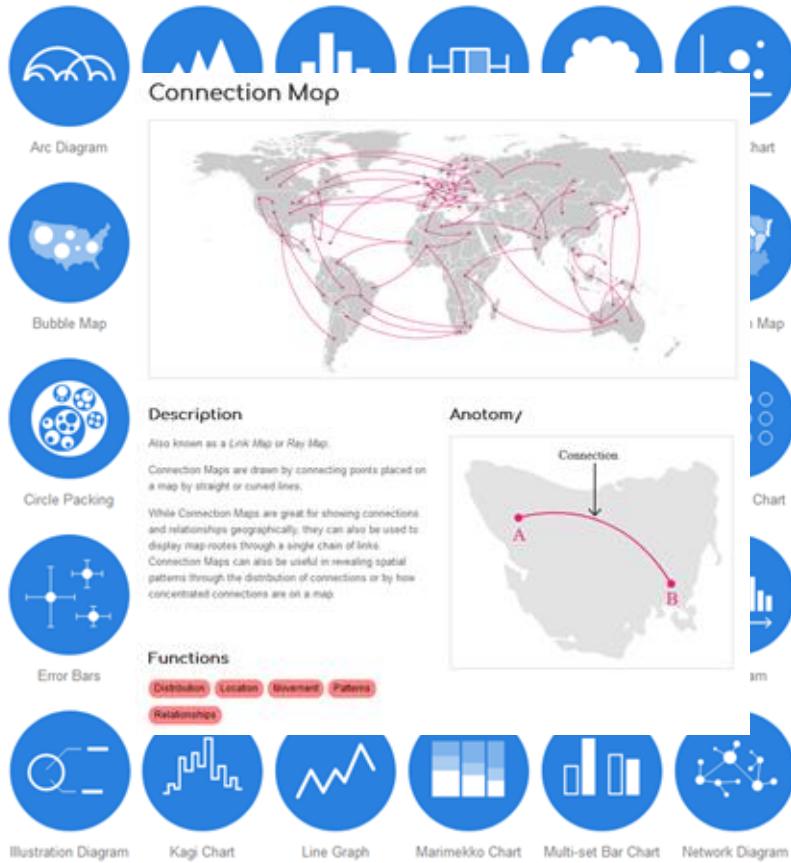
if $y = e^x$, then $\log(y) = x$


if $y = b^x$, then $\log(y) = \log(b)*x$

=> becomes linear in x

World Oil Production

World Oil Production



...log-scale emphasizes relative changes in smaller quantities

More Visualization Resources

61

datavizcatalogue.com

matplotlib
matplotlib.org

scikit-learn.org