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Rules of probability 

• To recap and summarize: 



Summary: calculating probabilities

• If we know that all outcomes are equally likely, we can use 

• If |E| is hard to calculate directly, we can try 

• the rules of probability

• the Law of Total Probability, using an appropriate partition of 

sample space S
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Number of elements

in event set

Number of possible

outcomes (e.g. 36)

We will use combinatorics 

to do counting 



Overview

• Conditional probability

• Probabilistic reasoning
• contingency table

• probability trees
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Conditional Probability

5



Example: Seat Belts

Suppose we pick a family from US at random:

• What is the probability of the event “Child is Buckled”?

• What should our new estimate be if we know that “Parent is 
Buckled”?



Example: blood types

• 𝐴: “presence of antigen A”, 𝐵: “presence of antigen B”

• Suppose someone of an unknown blood type gets a test that reveals the 
presence of antigen A. What is the chance that:

• event 𝐴 happens to them?
• event 𝐵 happens to them?



Relative area

• 𝐴: antigen A present         𝐵: antigen B present

• Given that 𝐴 happens, what is the chance of 𝐵 happening?

• Restricted to people with antigen A present, what is the 
fraction of those people with antigen B?

𝐴

𝐵



Relative area

• Let’s zoom into people with antigen A present. 

• It’s just as if the sample space had shrunk to include only 𝐴

• Now, probabilities correspond to proportions of 𝐴

• What does the orange square represent?

• 𝐴 ∩ 𝐵

• How would we find the probability of 𝐵 given 𝐴?

𝐴

𝐵



Conditional Probability

• To find the conditional probability of 𝐵 given 𝐴, consider the 
ways 𝐵 can occur in the context of 𝐴 (i.e., 𝐴 ∩ 𝐵), out of all 
the ways 𝐴 can occur: 

                 𝑃 𝐵 𝐴 =
𝑃(𝐴∩𝐵)

𝑃(𝐴)

𝐴

𝐵

𝐴 ∩ 𝐵

Example: 

A: currently inside a cafe

B: drinking coffee right now



Conditioning changes the sample space

• Before we knew anything, anything in sample space S could occur. 

• After we know 𝐴 happened, we are only choosing from within 𝐴. 

• The set 𝐴 becomes our new sample space

• Instead of asking “In what proportion of 𝑆 is 𝐵 true?”, we now ask “In 
what proportion of 𝐴 is 𝐵 true?” 

For example, rolling a fair die, define A: even numbers, B: get a 2. 

• Before knew anything, P(B) is 1/6 

• After knowing A, P(B) is (1/6) / (1/2) = 1/3



Every Probability is a Conditional Probability

• We can consider the original probabilities to be conditioned on the event 
𝑆: at first what we know is that “something in 𝑆” occurs. 

    𝑃(𝐵)  =  𝑃(𝐵|𝑆) 

                                            𝑃(𝐵 ∩ 𝐶)  =  𝑃(𝐵 ∩ 𝐶|𝑆)

• 𝑃 𝐵 𝑆  in words: what proportion of 𝑆 does 𝐵 happen?

• If we then learn that 𝐴 occurs, 𝐴 becomes our restricted sample space.

• 𝑃 𝐵 𝐴  in words: what proportion of 𝐴 does 𝐵 happen?

𝑃 𝐵 𝑆 =
𝑃(𝐵 ∩ 𝑆)

𝑃(𝑆)
= 𝑃(𝐵)



Joint Probability and Conditional Probability

• We can rearrange 𝑃 𝐵 𝐴 =
𝑃(𝐴∩𝐵)

𝑃(𝐴)
 and derive: 
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Example revisited: blood types 

• Suppose someone of an unknown blood type gets a test that reveals the 
presence of antigen A.

• What is 𝑃 𝐴 𝐴 ?

𝑃 𝐴 𝐴 =
𝑃(𝐴 ∩ 𝐴)

𝑃(𝐴)
= 1

• What is 𝑃 𝐵 𝐴 ?

           𝑃 𝐵 𝐴 =
𝑃(𝐴∩𝐵)

𝑃(𝐴)
=

0.04

0.46
= 0.087



Example revisited: Seat Belts

Suppose we pick a family from US at random:

• What is the probability of the event “Child is Buckled”?

• What should our new estimate be if we know that (“given 
that”) Parent is Buckled?

𝐴: parent is buckled

𝐶: child is buckled

𝑃(𝐶)

𝑃(𝐶 ∣ 𝐴)



Example revisited: Seat Belts

Suppose we pick a family from the US at random:

• 𝑃 𝐶 = 0.58

• 𝑃 𝐶 𝐴 =
𝑃(𝐶∩𝐴)

𝑃(𝐴)
=

0.48

0.60
= 0.8 

• Suppose we see a buckled parent, it is much more likely 
that we see their child buckled

𝐴: parent is buckled

𝐶: child is buckled

Larger than 𝑃 𝐶  



Law of Total Probability, revisited

Law of Total Probability Suppose 𝐵1, … , 𝐵𝑛 form a partition 
of the sample space 𝑆. Then,  

𝑃 𝐴 = 𝑃 𝐴, 𝐵1 + ⋯ + 𝑃(𝐴, 𝐵𝑛)

Freshmen JuniorsSophomores Seniors

CS Maj



Law of Total Probability, revisited

Expanding each 𝑃 𝐴, 𝐵𝑖 = 𝑃 𝐴 𝐵𝑖 𝑃(𝐵𝑖), we have: 

𝑃 𝐴 = ෍

𝑖=1

𝑛

𝑃 𝐴 𝐵𝑖 𝑃(𝐵𝑖)

Freshmen JuniorsSophomores Seniors

CS Maj

𝑃 𝐴 𝐵𝑖  The fraction of CS major in class year i 𝐴: student in CS major 

𝐵𝑖  : student in class year i



Law of Total Probability, revisited

Example Suppose UA has an equal number of students in the 4 
class years, and the fraction of CS major in these 4 class years are 
10%, 10%, 20%, 80% respectively. What is fraction of CS majors?

 

• 𝑃 𝐵1 = 𝑃 𝐵2 = 𝑃 𝐵3 = 𝑃 𝐵4 = 0.25

• 𝑃 𝐶 𝐵1 = 0.1, …, 𝑃 𝐶 𝐵4 = 0.8

• Calculate 𝑃 𝐶  by: 

𝑃 𝐶 = ෍

𝑖=1

4

𝑃 𝐶 𝐵𝑖 𝑃(𝐵𝑖) = 30%



Probabilistic reasoning
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Probabilistic reasoning

• We have some prior belief of an event 𝐴 happening 
• 𝑃(𝐴), prior probability

• e.g. me infected by COVID

• We see some new evidence 𝐵
• e.g. I test COVID positive

• How does seeing 𝐵 affect our belief about 𝐴?
• 𝑃(𝐴 ∣ 𝐵), posterior probability



Another example: detector

A store owner discovers that some of her employees have taken cash. She decides 
to use a detector to discover who they are.

• Suppose that 10% of employees stole.

• The detector buzzes 80% of the time that someone stole, and 20% of the time 
that someone not stole

• Is the detector reliable? In other words, if the detector buzzes, what’s the 
probability that the person did stole?

H: employee not stole 

B: lie detector buzzes



Another example: detector

• Suppose that 10% of employees stole.

• The detector buzzes 80% of the time that someone stoles, and 20% of 
the time that someone not stole.

• If the detector buzzes, what’s the probability that the person stole?

H: employee did not stole 𝑃 𝐻 = 0.9 

B: lie detector buzzes

𝑃 𝐻𝐶 ∣ 𝐵

𝑃 𝐵 ∣ 𝐻𝐶 = 0.8

𝑃 𝐵 ∣ 𝐻 = 0.2



Detector analysis: Probability table

Detector result

Pass (BC) Buzz (B) Marginal

Employee Not stole (H)

Stole (HC)

Marginal

𝑃 𝐻 = 0.9 

𝑃 𝐵 ∣ 𝐻𝐶 = 0.8

𝑃 𝐵 ∣ 𝐻 = 0.2



Detector analysis: Probability table

Detector result

Pass (BC) Buzz (B) Marginal

Employee Not stole (H)

Stole (HC)

Marginal

𝑃 𝐻 = 0.9 

𝑃 𝐵 ∣ 𝐻𝐶 = 0.8

𝑃 𝐵 ∣ 𝐻 = 0.2

0.9 

0.1 

𝑃 𝐻, 𝐵 = 𝑃 𝐻 ⋅ 𝑃 𝐵 𝐻 = 0.9 × 0.2 = 0.18

0.18 



Detector analysis: Probability table

Detector result

Pass (BC) Buzz (B) Marginal

Employee Not stole (H)

Stole (HC)

Marginal

𝑃 𝐻 = 0.9 

𝑃 𝐵 ∣ 𝐻𝐶 = 0.8

𝑃 𝐵 ∣ 𝐻 = 0.2

0.9 

0.1 

0.18 

𝑃 𝐻 = 𝑃 𝐻, 𝐵 + 𝑃 𝐻, 𝐵𝑐 = 0.9

0.72 



Detector analysis: Probability table

Detector result

Pass (BC) Buzz (B) Marginal

Employee Not stole (H)

Stole (HC)

Marginal

𝑃 𝐻 = 0.9 

𝑃 𝐵 ∣ 𝐻𝐶 = 0.8

𝑃 𝐵 ∣ 𝐻 = 0.2

0.9 

0.1 

0.18 0.72 

0.08 0.02 

0.74 0.26 1



Detector analysis: Probability table

Detector result

Pass (BC) Buzz (B) Marginal

Employee Not stole (H)

Stole (HC)

Marginal

0.9 

0.1 

0.18 0.72 

0.08 0.02 

0.74 0.26 1

• We have the full probability table. Can we calculate 𝑃 𝐻𝐶 ∣ 𝐵 ? Yes! 

                            𝑃 𝐻𝐶 ∣ 𝐵 =
𝑃 𝐻𝐶,𝐵

𝑃(𝐵)

It seems like the detector is not very reliable… 

0.08

0.26
= 0.307



Recap

• Conditional probability: 𝑃 𝐵 𝐴 =
𝑃(𝐴∩𝐵)

𝑃(𝐴)

• Law of total probability: 𝑃 𝐴 = σ𝑖=1
𝑛 𝑃(𝐴, 𝐵𝑖) = σ𝑖=1

𝑛 𝑃 𝐴 𝐵𝑖 𝑃(𝐵𝑖)

• If we know P 𝐻 , 𝑃 𝐵 𝐻𝐶 , 𝑃 𝐵 𝐻 :

• P 𝐻 → 𝑃 𝐻𝐶

• P 𝐻 , 𝑃 𝐵 𝐻 → 𝑃 𝐵, 𝐻

• P 𝐻𝐶 , 𝑃 𝐵 𝐻𝐶 → 𝑃 𝐵, 𝐻𝐶

• P B → 𝑃 𝐵, 𝐻 + 𝑃 𝐵, 𝐻𝐶

• 𝑃 𝐵 , 𝑃 𝐵, 𝐻 → 𝑃 𝐻|𝐵

• 𝑃 𝐵 , 𝑃 𝐵, 𝐻𝐶 → 𝑃 𝐻𝐶|𝐵

• We can get 𝑃 𝐵 , 𝑃 𝐻|𝐵 , 𝑃 𝐻𝐶|𝐵

Complement rule

joint probability

joint probability

marginal probability

conditional probability

conditional probability



Today’s plan

• Another tool: probability trees

• Bayes rule

• Bayes rule and law of total probability



Probability trees: another useful tool 

Not stole (H)

Stole (H’)



Probability trees: another useful tool 

Not stole (H)

Stole (H’)



Probability trees: another useful tool 

Not stole (H)

Stole (H’)



Probability trees: another useful tool 

Not stole (H)

Stole (H’)

A joint probability
multiplies all probabilities
along a path in the tree



Probability trees: another useful tool 

• What is 𝑃(Buzz, Stole)?

• 0.08

• 𝑃(Buzz)?

• Hint: which branches end up with 
buzzing? 

• 0.26 (0.08+0.18)

• 𝑃(Stole ∣ Buzz)?

• Hint: which of the prev. branches 
contains the stole event?

• 0.08 / 0.26

Not stole (H)

Stole (H’)



In-class activity: COVID test

The Public Health Department gives us the following information:

• A test for the disease yields a positive result (+) 90% of the time when the disease 
is present (Y)

• A test for the disease yields a positive result 1% of the time when the disease is not 
present (N)

• One person in 1,000 has the disease.

Draw a probability tree and use it to answer: what is the probability that a person 
with positive test has the disease?

P(Y) = 0.1%

P(+ | Y) = 0.9, “sensitivity” of the test

P(+ | N) = 0.01

P(Y | +)?
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In-class activity: COVID test

• Goal: calculate P(Y | +)

• Two branches are associated

with positive test results +
• What are the associated events?

• 𝑃 +, 𝑌 = 𝑃 + 𝑌 𝑃 𝑌 = 0.09%

• 𝑃 +, 𝑁 = 𝑃 + 𝑁 𝑃 𝑁 = 0.999%

• 𝑃(𝑌 | +)=
𝑃 +,𝑌

𝑃(+)
=

0.09%

0.09%+0.999%
≈

1

12

• Conclusion: being tested positive does not mean much..

P(Y) = 0.001

P(+ | Y) = 0.9

P(+ | N) = 0.01

𝑌

𝑁

+

−

−

+

0.1%

99.9%

0.9

0.01

0.09%

0.999%



In-class activity: COVID test

Probabilistic reasoning tells as how does seeing a new 
evidence affect our prior belief about an event.

• Prior probability: one person in 1,000 has the disease:

• New evidence: seen a person is tested positive

• Posterior probability: a person with positive test has the disease:  

P(Y) = 0.1%

𝑃(𝑌 | +)=
0.09%

0.09% + 0.999%
≈

1

12



COVID test: additional insights

• What would P(Y | +) look like, if instead: 
• 1 in 100 people have COVID?

• 1 in 10?

• Insight: base rate 𝑃(𝑌) significantly affects P(Y | +), hence 
the conclusions we draw

𝑌

𝑁

+

−

−

+

0.1%

99.9%

0.9

0.01

0.09%

0.999%

1%

0.9%

10%

9%

Note: this branch’s value is 

imprecise, but roughly 

stays close to 1%!

𝑃(𝑌 | +)=
𝑃 +,𝑌

𝑃(+)
=

𝟎.𝟎𝟗%

𝟎.𝟎𝟗%+0.999%
≈

1

12



Conditional probability: additional note

• The rules of probability also applies to the rules of conditional probability 

• Just replace 𝑃 𝐸 , 𝑃(𝐹) with 𝑃 𝐸 𝐴 , 𝑃(𝐹|𝐴) 
• But, need to condition on the same 𝐴 in the same equation



Some examples

• 𝑃 𝑆 𝐴 = 1      𝐴: CS major

• 𝑃 𝐸 𝐴 + 𝑃 𝐸𝐶 𝐴 = 1

• 𝑃 𝐸 𝐴 + 𝑃 𝐹 𝐴 = 𝑃 𝐸 ∪ 𝐹 𝐴  for disjoint E and F

Freshmen JuniorsSophomores Seniors

CS Maj



Bayes rule
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Reversing conditional probabilities

• Is 𝑃 𝐴 𝐵 = 𝑃 𝐵 𝐴  in general?

• Let’s see.. 

               𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵 ⋅ 𝑃 𝐵 = 𝑃 𝐵 𝐴 ⋅ 𝑃(𝐴)
• Equal only when 𝑃 𝐴  and 𝑃 𝐵  are equal

• Let’s take a look at a real-world example when they are unequal…



Reversing conditional probabilities

Q: Hearing a French accent means someone is French?

Event A: A person is from France.

Event B: A person speaks English with a French accent.

• In a diverse city, only 5% of people are from France 

• Of those from France, 80% speak English with a French accent: 𝑃 𝐵|𝐴

• Of those not from France, only 2% speak English with a French accent (due to 
schooling, mimicry, or neighboring countries)

What is 𝑃 𝐴 , 𝑃 𝐵  and 𝑃 𝐴|𝐵 ?



Reversing conditional probabilities

What is 𝑃 𝐴 , 𝑃 𝐵  and 𝑃 𝐵|𝐴 ?

• 𝑃 𝐴 = 0.05

• 𝑃 𝐵 = 𝑃 𝐴, 𝐵 + 𝑃 𝐴𝑐 , 𝐵 = 𝑃 𝐵 𝐴  ⋅ 𝑃 𝐴 + 𝑃 𝐵 𝐴𝑐 ⋅
𝑃 𝐴𝑐 = 0.8 ⋅ 0.05 + 0.02 ⋅ (1 − 0.05) = 0.04 + 0.019 = 0.059

• 𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴, 𝐵)/𝑃 𝐵 = 0.04/0.059 ≈ 0.678

So 𝑃 𝐴 ≠ P(B), also hearing a French accent doesn’t 
guarantee someone is French: a ~68% chance



Bayes rule

Bayes rule For events 𝐴, 𝐵, 

𝑃 𝐴 𝐵 =
𝑃 𝐴 ⋅ 𝑃 𝐵 𝐴

𝑃(𝐵)

• Very easy to derive from the chain rule, so remember that first.

• Named after Thomas Bayes (1701-1761), English philosopher & pastor



Bayes rule

Bayes rule For events 𝐴, 𝐵, 

𝑃 𝐴 𝐵 =
𝑃 𝐴 ⋅ 𝑃 𝐵 𝐴

𝑃(𝐵)

Examples: 

• 𝐴: I have COVID, 𝐵: my test shows positive

• 𝐴: employee stole 𝐵: the detector buzzes

• 𝐴: student is CS major 𝐵: student is a senior

Prior probability Support of evidence

Posterior probability Probability of evidence



Bayes rule: another example 

• In a class, 16% of the students are Nutrition Science majors, 55% 
students are female. Of the Nutrition Science majors, 54% are female. 

• What proportion of female students in the class are Nutrition Science 
majors?

• What is the probability tree of this?

• We are looking for 𝑃(𝑁 ∣ 𝐹)

𝑁

𝑁𝐶

𝐹

𝐹C

𝐹C

𝐹

16% 

54% 

55% 



𝑁

𝑁𝐶

𝐹

𝐹C

𝐹C

𝐹

16% 

54% 

55% 

Bayes rule: another example 

• 16% of the students are Nutrition Science majors, 55% are female. Of 
the Nutrition Science majors, 54% are female. What proportion of 
female students in the class are Nutrition Science majors?

• We can use 𝑃 𝑁 𝐹 =
𝑃(𝑁,𝐹)

𝑃(𝐹)
• We know 𝑃 𝐹 = 0.55

• Can we obtain 𝑃(𝑁, 𝐹)?
• We can use 𝑃 𝑁, 𝐹 = 𝑃 𝐹 𝑁 ⋅ 𝑃 𝑁 = 0.54 × 0.16

• Altogether, we have 

𝑃 𝑁 𝐹 =
𝑃 𝐹 𝑁 ⋅ 𝑃(𝑁) 

𝑃(𝐹)
=

0.54 × 0.16

0.55



Recap: Bayes rule

Bayes rule For events 𝐴, 𝐵, 

𝑃 𝐴 𝐵 =
𝑃 𝐴 ⋅ 𝑃 𝐵 𝐴

𝑃(𝐵)

Examples: 

• 𝑌: Inflected by COVID, +∶ Test shows positive

• 𝑃 𝑌 + =
𝑃 𝑌 ⋅𝑃 + 𝑌

𝑃(+)

Prior probability Support of evidence

Posterior probability Probability of evidence



Bayes rule and Law of Total Probability

Bayes rule (equivalent form) For event 𝐴 and 𝐵1, … , 𝐵𝑛 
forming a partition of 𝑆,

𝑃 𝐵𝑖 𝐴 =
𝑃 𝐴 𝐵𝑖 ⋅ 𝑃(𝐵𝑖) 

σ𝑗=1
𝑛 𝑃 𝐴 𝐵𝑗 ⋅ 𝑃(𝐵𝑗) 𝑃(𝐴)

Freshmen JuniorsSophomores Seniors

CS Maj

   ….



Bayes rule and Law of Total Probability

Example Suppose UA has an equal number of students in the 
4 class years, and the fraction of CS major in these 4 class 
years are 10% (𝑃 𝐶|𝐵1 ), 10%, 20%, 80% respectively. 

We have previously calculated that 𝑃 𝐶 = 30% 

If we see a CS major student, what is their most likely year 
class?

  𝑃 𝐵1 ∣ 𝐶 , … , 𝑃 𝐵4 ∣ 𝐶  -> maximum? 



Bayes rule and Law of Total Probability

• Let’s draw a probability tree..

• After learning that the student is CS major: 

𝑃 𝐵1 ∣ 𝐶 =
0.25 × 0.1

𝑃(𝐶)

           …

𝑃 𝐵4 ∣ 𝐶 =
0.25 × 0.8

𝑃(𝐶)

• So most likely, this student is a senior 

• Equivalent form: 𝑃 𝐵𝑖 ∣ 𝐶 ∝ 𝑃 𝐵𝑖 𝑃(𝐶 ∣ 𝐵𝑖)
• ∝: proportional to 

• 𝑃(𝐶) can be viewed as a normalization factor

   Fres.
CS

      

Soph.

      

Jun.

      

Sen.

NonCS

CS

NonCS

CS

NonCS

CS

NonCS

0.25

0.25

0.25

0.25

0.1

0.1

0.2

0.8



Extension: chain rule for conditional probability

• If we deal with more than 3 events happening together, we 
can apply the chain rule of probability repeatedly: 

𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴 𝐵, 𝐶  𝑃(𝐵, 𝐶)

                                        = 𝑃 𝐴 𝐵, 𝐶  𝑃 𝐵 𝐶  𝑃(𝐶)

Treat (B, C) as a single event



Independence
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Probabilistic Independence

• Event S: 10% of employees stole.

• Event R: There’s a 5% chance of rain tomorrow.

• What’s the probability an employee stole if it rains tomorrow?

Probably your intuition is that one conveys no information about the other. 

What does this mean about the relationship between P(S|R), and P(S)?



Probabilistic Independence

• Is the independence symmetric? 

• In other words, if P(A|B) = P(A), is P(B|A) = P(B)? 



Probabilistic Independence

• If 𝐴 is independent of 𝐵, then 𝑃 𝐴 𝐵 = 𝑃(𝐴). Is 𝑃 𝐵 𝐴  
also equal to 𝑃(𝐵)?

• Using Bayes’ rule, we have

𝑃 𝐵 𝐴 =
𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃(𝐴)

• So independence is indeed a symmetric notion



Independence: equivalent statement

• If 𝐴, 𝐵 are independent, then their joint probability has a 
simple form: 

𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵 𝑃(𝐵)

                                          = 𝑃 𝐴 ⋅ 𝑃(𝐵)

• This is an equivalent characterization of independence



Are these independent events?

A box has 2 yellow balls and 2 red balls.

• E: the 1st draw is yellow, F: the 2nd draw is yellow (with replacement)

• E: the 1st draw is yellow, F: the 2nd draw is yellow (without replacement)

Hint: calculate P(E), P(F) and P(E, F)

𝑃 𝐸, 𝐹 = 𝑃 𝐸  ×  P F E =
2

4
×

1

3
=

1

6

𝑃 𝐸 =
1

2

𝑃 𝐹 =
2 

4
⋅

1

3
+

2

4
⋅

2

3
=

1

2
𝑃 𝐴 = ෍

𝑖=1

𝑛

𝑃 𝐴 𝐵𝑖 𝑃(𝐵𝑖)



Independence of several events

• We can generalize the notion of independence from two 
events to more than two. 

• E.g. A: employee stole; B: rain tomorrow, C: stock price up

• Events 𝐴1, … , 𝐴𝑛 are independent if for any subsets 
𝐴𝑖1

, … , 𝐴𝑖𝑗
, 

𝑃 𝐴𝑖1
, … , 𝐴𝑖𝑗

= 𝑃 𝐴𝑖1
⋅ … ⋅ 𝑃(𝐴𝑖𝑗

)



Independence of several events

• If events 𝐴, 𝐵, 𝐶 are independent, then 

• 𝑃 𝐴, 𝐵, 𝐶 = 𝑃 𝐴 ⋅ 𝑃 𝐵 ⋅ 𝑃(𝐶)

• 𝑃 𝐴, 𝐶 = 𝑃 𝐴 ⋅ 𝑃(𝐶)

• 𝑃 𝐵, 𝐶 = 𝑃 𝐵 ⋅ 𝑃(𝐶)

Rolling a die three times, the probability of sequence (1, 2, 3)? 

1/6 x 1/6 x 1/6



Independent vs. Disjoint Events

• Many people confuse independence with disjointness.

• They are very different!

• What do the Venn diagrams look like?

Disjoint Independence: P(B|A) = P(B)



Independent vs. Disjoint Events

• If A and B are disjoint, what is P(B|A)?

𝑃 𝐵 𝐴 =
𝑃(𝐴, 𝐵)

𝑃(𝐴)
= 0!

• Disjointness is practically the opposite of independence: if A 
occurs, B doesn’t occur

• Defining property of independent events:
𝑃(𝐴 ∩  𝐵)  =  𝑃(𝐴)𝑃(𝐵)

• Defining property of disjoint events: 

                                   𝑃(𝐴 ∩  𝐵)  =  0



In-class activity: the absent-minded diners

• Three friends decide to go out for a meal, but they forget where they’re 
going to meet.

• Fred decides to throw a coin. If it lands heads, he’ll go to the Chinese 
restaurant; tails, and he’ll go to the Italian restaurant.

• George throws a coin, too: heads, it’s the Italian restaurant; tails, it’s the 
Mexican restaurant.

• Ron decides he’ll just go to the Italian restaurant.

• What’s the probability that all three friends meet?

• What’s the probability that all three people not eating together?

0.5 * 0.5 = 0.25

1 - 0.25 = 0.75



Summary



Probability and Combinatorics
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Probability and Combinatorics

• Combinatorics (in CSc144) are useful in calculating 
probabilities

• Permutations

• Combinations 

• Recall: when all outcomes are equally likely:
Number of outcomes

in event set

Number of possible

outcomes (e.g. 36)



Permutation number

• If ordered selection of k items out of n is done without 
replacement, there are

𝑛 × 𝑛 − 1 × ⋯ × 𝑛 − 𝑘 + 1 =
𝑛!

(𝑛 − 𝑘)!

    outcomes

Choose 2 from 3 sports 

for people A and B



Example: Birthdays

• Probability that at least 2 in a group of 20 have same 
birthday?

• Sample space: 𝑆 = 𝑛1, … , 𝑛20 :  𝑛1, … , 𝑛20 ∈ 1, … , 365

• What is 𝑆 ?
• 36520

• 𝐸: set of outcomes where at least two have same birthday, 
e.g. (5,5,176, .., 80) Number of elements

in event set

Number of possible

outcomes (e.g. 36)



Example: Birthdays

• Let’s try to calculate |𝐸|

• It turns out that it is easier to calculate |𝐸𝐶|

• 𝐸𝐶 : all 20 birthdays are different

• 𝐸𝐶 =
365!

365−20 !
= 365 × 364 × ⋯ … × 346 

• 𝑃 𝐸 = 1 − 𝑃 𝐸𝐶 = 1 −
365!

365−20 !⋅36520 ≈ 0.411

This is quite high?! “Birthday paradox”

185 13 359 .. 243 19

Choose 20 from 365 days for 

people 1, 2, … 20



Repeated independent trials (Bernoulli trials)

If we repeatedly perform an experiment 𝑛 independent times, each with 
success probability 𝑝, what is the probability that we succeed 𝑚 times?

• Let’s say: 𝑛 = 3, 𝑝 =
1

6
, 𝑚 = 2

• Applications: sports analytics, gene mutations, etc. 

• Named after Jacob Bernoulli (1655-1705)



Repeated independent trials: analysis

• Draw a probability tree!

• 𝑛 = 3, 𝑞 ≔ 1 − 𝑝

Observations:

• 2𝑛 = 8 paths

• Paths with same #successes (𝑚) 
have identical probabilities

• They are equal to 𝑝𝑚𝑞𝑛−𝑚 

How many paths have 2 
successes? 

• 3? 

• 2? 

• 1?



Combination number 

• If unordered selection of k items out of n is done without 
replacement, there are

𝑛!

𝑛 − 𝑘 !  𝑘!
 =:

𝑛

𝑘

    outcomes

duplicates! Only 3 outcomes



Repeated independent trials: analysis

• The paths with 2 successes are:

         SSF, SFS, FSS 

    # such paths is 3
2

• In general, given 𝑛 trials, #paths with 𝑚 successes is 𝑛
𝑚

• select m different success positions out of n slots

• Thus, 𝑃 𝑚 successes = 𝑛
𝑚

⋅ 𝑝𝑚𝑞𝑛−𝑚 = 3 ⋅
1

6

2
⋅

5

6
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