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Rules of probability

To recap and summarize:

Rules of Probability

1. Non-negativity: All probabilities are between 0 and 1
(inclusive)

2. Unity of the sample space: P(S) = 1
3. Complement Rule: P(E¢) = 1- P(E)
4. Probability of Unions:
(a) In general, P(EU F) = P(E)+ P(F)- P(En F)
(b) If E and F are disjoint, then P(EU F) = P(E) + P(F)



Summary: calculating probabilities

* If we know that all outcomes are . We can use
I3
P(E)="=!
S|

* If |E| is hard to calculate directly, we can try
* the rules of probability
* the Law of Total Probability, using an appropriate partition of

sample space S



Overview

« Conditional probability

* Probabillistic reasoning
* contingency table
* probability trees






Example: Seat Belts

Child
Buck. Unbuck. | Marginal

Bacdc | 048 012 0.60
Parent ., 0 | 010 030 0.40
| Marginal OSSN0

Table: Probability Estimates for Seat Belt Status

Suppose we pick a family from US at random:
What is the probability of the event “Child is Buckled™?

What should our new estimate be if we know that “Parent is
Buckled”?



Example: blood types

Antigen B
Absent Present | Marginal
Antigen A SIS 0.44 0.10 0.54
Present 0.42 0.04 0.46
Marginal [JOSSIIIIO2 00N

Table: Probability Estimates for U.S. Blood Types

A: “presence of antigen A”, B: “presence of antigen B”
Suppose someone of an unknown blood type gets a test that reveals the
presence of antigen A. What is the chance that:

event A happens to them?

event B happens to them?



Relative area

. A: antigen A present B: antigen B present

Given that 4 happens, what is the chance of B happening?
S

o= -

Sk
v

Restricted to people with antigen A present, what is the
fraction of those people with antigen B?



Relative area

Let’'s zoom into people with antigen A present.
B

It's just as if the sample space had shrunk to include only A
Now, probabilities correspond to proportions of A

What does the orange square represent?
ANB

How would we find the probability of B given A?



Conditional Probability

To find the conditional probability of B given A, consider the
ways B can occur in the context of A (i.e., A n B), out of all
the ways A can occur:

S
P(ANB
P(BlA) = A(D(A)) °
ANB A
Example:

A: currently inside a cafe
B: drinking coffee right now



Conditioning changes the sample space

Before we knew anything, anything in sample space S could occur.
After we know A happened, we are only choosing from within A.

The set A becomes our new sample space

Instead of asking “In what proportion of S is B true?”, we now ask “In
what proportion of A is B true?”

For example, rolling a fair die, define A: even numbers, B: get a 2.
Before knew anything, P(B) is 1/6
After knowing A, P(B) is (1/6) / (1/2) = 1/3



Every Probability is a Conditional Probability

We can consider the original probabilities to be conditioned on the event
S: at first what we know is that “something in S” occurs.

P(B) = P(B|S) P(B1S) ="022 = P(B)
P(BNC) = P(BNC|S)

P(B|S) in words: what proportion of S does B happen?
If we then learn that A occurs, A becomes our restricted sample space.
P(B|A) in words: what proportion of A does B happen?



Joint Probability and Conditional Probability

P(ANB)
P(4)

The “Chain Rule” of Probability

For any events, A and B, the joint probability P(A n B) can be
computed as

and derive:

We can rearrange P(B | A) =

P(An B) = P(BIA) x P(A)
Or, since P(An B) = P(Bn A)

P(An B) = P(AIB) x P(B)



Terminology

When we have two events A and B...
 Conditional probability: P(A|B), P(A€|B), P(B|A) etc.

* Joint probability: P(A,B) or P(A¢,B) or ...

* Marginal probability: P(A) or P(A°)
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Example revisited: blood types

Antigen B
Absent Present | Marginal
Antigen A Absent 0.44 0.10 [].54
Present 0.42 0.04
Marginal 0.86 0.14 _

Table: Probability Estimates for U.5. Blood Types

Suppose someone of an unknown blood type gets a test that reveals the
presence of antigen A.

Whatis P(A| A)?

P(AN A)
P(A|A) = PA)
Whatis P(B | A)?
P(B|A)="2408) _ 004 _ 087

P(4)  0.46



Example revisited: Seat Belts

Child
. Buck. Unbuck. | Marginal
A: parent is buckled | Buck. 0.48 012 0.60
C: child is buckled Parent Gbuck. | 010 030 040
Marginal [JJ0IS8 042 1.00

Table: Probability Estimates for Seat Belt Status

Suppose we pick a family from US at random:
What is the probability of the event “Child is Buckled”? P(C)

What should our new estimate be if we know that (“given
that”) Parent is Buckled? P(C | A)



Example revisited: Seat Belts

Child
. Buck. Unbuck. | Marginal
A: parent is buckled | Buck. 0.48 012 0.60
C: child is buckled Parent Gbuck. | 010 030 040
Marginal [JJ0IS8 042 1.00

Table: Probability Estimates for Seat Belt Status

Suppose we pick a family from the US at random:
P(C) = 0.58

P(C|A)=——=—-=0.8 Larger than P(C)

Suppose we see a buckled parent, it is much more likely
that we see their child buckled



Law of Total Probability, revisited

Law of Total Probability Suppose B;, ..., B,, form a partition
of the sample space S. Then,

P(A) = P(A,B,) +-+ P(A,B,)

CS Maj

Freshmen Sophomores Juniors Seniors



Law of Total Probability, revisited
Expanding each P(A, B;) = P(A | B;)P(B;), we have:

P(A) = z P(A | B;)P(B;)
=1

A: student in CS major P(A | B;) The fraction of CS maijor in class year i
B; : student in class year i
CS Maj

Freshmen Sophomores Juniors Seniors



Law of Total Probability, revisited

Example Suppose UA has an equal number of students in the 4
class years, and the fraction of CS major in these 4 class years are
10%, 10%, 20%, 80% respectively. What is fraction of CS majors?

P(B;) = P(B;) = P(B;) = P(B,) = 0.25
P(C|B;)=0.1,...,P(C|B,) =0.8
Calculate P(C) by:

P(C) = 2 P(C | B,)P(B;) = 30%
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Probabilistic reasoning

We have some prior belief of an event A happening 1
P(A), prior probability LB
e.g. me infected by COVID <Y

We see some new evidence B o
e.g. | test COVID positive &

How does seeing B affect our belief about A?
P(A | B), posterior probability



Another example: detector

A store owner discovers that some of her employees have taken cash. She decides
to use a detector to discover who they are.

Suppose that 10% of employees stole.

The detector buzzes 80% of the time that someone stole, and 20% of the time
that someone not stole

|s the detector reliable? In other words, if the detector buzzes, what's the
probability that the person did stole?

H: employee not stole
B: lie detector buzzes



Another example: detector

Suppose that 10% of employees stole.

H: employee did not stole P(H) = 0.9

The detector buzzes 80% of the time that someone stoles, and 20% of
the time that someone not stole.
P(B|H =0.8
B: lie detector buzzes P(B | H) =02

If the detector buzzes, what's the probability that the person stole?

P(HC | B)



Detector analysis: Probability table

Detector result

Pass (BC) Buzz (B) Marginal
Employee Not stole (H)
Stole (H°)
Marginal
P(H) =0.9
P(B|H®) =038

P(B|H)=0.2



Detector analysis: Probability table

P(H,B) = P(H)-P(B|H)=09x0.2=0.18

Detector result

Pass (BC) Buzz (B) Marginal
Employee Not stole (H)
Stole (H°)
Marginal
P(H) =0.9
P(B|H®) =038

P(B|H)=0.2



Detector analysis: Probability table
P(H) = P(H,B) + P(H,B) = 0.9

Detector result

Pass (B) Buzz (B) Marginal
Employee Not stole (H)
Stole (H°)
Marginal
P(H) =0.9
P(B|H®) =038

P(B|H)=0.2



Detector analysis: Probability table

Detector result

Pass (BC) Buzz (B) Marginal
Employee Not stole (H)
Stole (H°)
Marginal
P(H) =0.9
P(B|H®) =038

P(B|H)=0.2



Detector analysis: Probability table

Detector result
Pass (BC) Buzz (B) Marginal
Employee Not stole (H)
Stole (H°)

Marginal

We have the full probability table. Can we calculate P(H¢ | B)? Yes!
C _ P(H"B) 908 _ 4307
P(H l B) _ P(B) 0.26 '

It seems like the detector is not very reliable...




- Conditional probability: P(B | A) =

Recap

P(ANB)
P(4)

- Law of total probability: P(4) = )i, P(A,B;) = X"~ P(A| B;)P(B;)
. If we know P(H), P(B|H), P(B|H):

. P(H) -» P(HY)

. P(H),P(B|H) - P(B,H)

. P(H®),P(B|H®) - P(B,H®)
. P(B) - P(B,H) + P(B,H®)
. P(B),P(B,H) - P(H|B)

. P(B),P(B,H®) - P(H®|B)

- We can get P(B),P(H|B), P(H¢|B)



Today’s plan

- Another tool: probability trees

Bayes rule
Bayes rule and law of total probability



Probability trees: another useful tool

P(B|H) = 0.2 Buzz (B)

Not stole (H)

P(B’'|H) = 0.8 pass (B

P(B|H') = 0.8 Buzz (B)

Stole (H’)

P(B'|H") =02
Pass (B')



Probability trees: another useful tool

L“_-H
-

Not stole (H)

Stole (H’)

P(B|H) = 0.2 Buzz (B)

P(B’|H) = 0.8
(B"IH) Pass (B')

P(B|H') = 0.8 Buzz (B)

P(B'|H") = 0.2
Pass (B')



Probability trees: another useful tool

no

overlap
must sum to 1 P(B|H) = 0.2 Buzz (B)
Not stole (H)
P(B"|H) = 0.8 Pass (B
P(B|H') = 0.8 Buzz (B)

Stole (H’)

P(B'|H") = 0.2
Pass (B')



Probability trees: another useful tool

P(BIH) = 0.2 Buzz (B)
Not stole™()

P(B’'|H) = 0.8 pass (B

P(B|H') = 0.8 Buzz (B)

Stole (H’)

P(B'|H") =02
Pass (B')



Probability trees: another useful tool

What is P(Buzz, Stole)?
0.08 P(BIH) = 0.2

Buzz (B)

P(BUZZ)? Not stole (H)

P(H) = 0.9

Hint: which branches end up with
buzzing?
0.26 (0.08+0.18)

P(Stole | Buzz)?

Hint: which of the prev. branches
contains the stole event? P(B'[H') = 0.2

0.08/0.26

P(B’|H) = 0.8 pass (B)

P(B|H) = 0.8 Buzz (B)

Stole (H’)

Pass (B')



In-class activity: COVID test

The Public Health Department gives us the following information:

* A test for the disease yields a positive result (+) 90% of the time when the disease
is present (Y) P(+|Y)=0.9, “sensitivity” of the test

* A test for the disease yields a positive result 1% of the time when the disease is not
present (N) P(+ | N)=0.01

* One person in 1,000 has the disease. P(Y)=0.1%

Draw a probability tree and use it to answer: what is the probability that a person
with positive test has the disease? PIY | +)?




In-class activity: COVID test

Goal: calculate P(Y | +) + 0.09%

. 0.9

. Two branches are associated 0.1% ' <

with positive test results + 00 b 0990
- What are the associated events? 99.9% N < |

P(+,Y) = P(+l Y)P(Y) = 0.09%
P(+,N) = P(+| N)P(N) = 0.999%

P(+]Y)=0.9
T P(+)  0.09%+0.999% 12 P(Y) =0.001

Conclusion: being tested positive does not mean much..



In-class activity: COVID test

Probabilistic reasoning tells as how does seeing a new
evidence affect our prior belief about an event.
Prior probability: one person in 1,000 has the disease: P(Y)=0.1%
New evidence: seen a person is tested positive
Posterior probability: a person with positive test has the disease:

0.09% 1

P(Y | +)= ~
1 4)=509% 1 0.999% ~ 12




COVID test: additional insights

. What would P(Y | +) look like, if instead:

1in 100 people have COVID? POV )= = soaesos = 1
1in 10?

.
|

0.9 + 9009%
008 Y <
< 0.0 +
N <
Insight: base rate P(Y) significantly affects P(Y | +), hence
the conclusions we draw



Conditional probability: additional note

The rules of probability also applies to the rules of conditional probability

Just replace P(E), P(F) with P(E|A), P(F|A)
But, need to condition on the same A in the same equation

Rules of Probability

1. Non-negativity: All probabilities are between 0 and 1
(inclusive)

2. Unity of the sample space: P(S) = 1
3. Complement Rule: P(E¢) = 1- P(E)
4. Probability of Unions:
(a) In general, P(EU F) = P(E) + P(F)—- P(En F)
(b) If E and F are disjoint, then P(Eu F) = P(E) + P(F)



Some examples

P(S|4A) =1 A: CS major
P(E|A) + P(E€|A) =1
P(E|A) + P(F|A) = P(E U F|A) for disjoint E and F

CS Maj

Freshmen Sophomores Juniors Seniors
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Reversing conditional probabilities

IsP(A|B)=P(B|A)ingeneral?
Let’s see..

P(A,B) =P(A|IB)-P(B) =P(B|A)-P(A)
Equal only when P(4) and P(B) are equal

Let’s take a look at a real-world example when they are unequal...



Reversing conditional probabilities

Q: Hearing a French accent means someone is French?
Event A: A person is from France.
Event B: A person speaks English with a French accent.
In a diverse city, only 5% of people are from France
Of those from France, 80% speak English with a French accent: P(B|A)

Of those not from France, only 2% speak English with a French accent (due to
schooling, mimicry, or neighboring countries)

What is P(A4),P(B) and P(A|B)?



Reversing conditional probabilities

Whatis P(A),P(B) and P(B|A)?

. P(A) =
. P(B) = P(A,B) + P(4¢,B) = P(B|A) - P(4) + P(B|A°) -

P(A°) = 0.8 0.05 4 0.02 - (1 — 0.05) = +0.019 =
. P(A|B)=P(A,B)/P(B) =0.04/ ~ 0.678

So P(A) + P(B), also hearing a French accent doesn’t
guarantee someone is French: a ~68% chance



Bayes rule

Bayes rule For events A4, B,

P(A)-P(B| A)
P(B)

P(A|B) =

Very easy to derive from the chain rule, so remember that first.
Named after Thomas Bayes (1701-1761), English philosopher & pastor

T




Bayes rule

Bayes rule For events A4, B,

P(AlB):P(A)-P(BIA)

P(B)

Examples:
A: I have COVID, B: my test shows positive
A: employee stole B: the detector buzzes
A: student is CS major B: student is a senior



Bayes rule: another example

In a class, 16% of the students are Nutrition Science majors, 55%
students are female. Of the Nutrition Science majors, 54% are female.

What proportion of female students in the class are Nutrition Science
majors?

54%
What is the probability tree of this? 16% N <

F
We are looking for P(N | F) NC <

F

F



Bayes rule: another example

16% of the students are Nutrition Science majors, 55% are female. Of
the Nutrition Science majors, 54% are female. What proportion of
female students in the class are Nutrition Science majors?

54%
We canuse P(N | F) = PIEI(VI;? 16% <
. We know P(F) = 0.55 <

Can we obtain P(N, F)?
We canuse P(N,F) =P(F|IN)-P(N) =0.54 x 0.16

Altogether, we have

p(N 1 F)= P IN) -PIN) _ 054 %0.16

P(F) 055




Bayes rule and Law of Total Probability

Bayes rule (equivalent form) For event 4 and B4, ..., B,
forming a partition of S,

p(B, 1 a4y = TCALBD - PED

" P(A|B;)-P(B) P(4)

CS Maj

Freshmen Sophomores Juniors Seniors



Bayes rule and Law of Total Probability

Example Suppose UA has an equal number of students in the
4 class years, and the fraction of CS major in these 4 class
years are 10% (P(C|B,)), 10%, 20%, 80% respectively.

We have previously calculated that P(C) = 30%

If we see a CS major student, what is their most likely year
class?

P(B;1C),..,P(B, | C)-> maximum?



Bayes rule and Law of Total Probability

Let’'s draw a probability tree..
After learning that the student is CS major:

P(B, | C) = 0.25x 0.1
P
P(B lC)_O.25x0.8
T PO

So most likely, this student is a senior

Equivalent form: P(B; | C) « P(B;)P(C | B;)
«: proportional to
P(C) can be viewed as a normalization factor

Fres.
Zéiii:i Soph. <i:::::
Jun.

0.25
0.
Sen.

CS

NonCS

NonCS

NonCS
CS

NonCS



Extension: chain rule for conditional probability

If we deal with more than 3 events happening together, we
can apply the chain rule of probability repeatedly:

P(A,B,C) =P(A|B,C) P(B,C)

=P(A|B,C)P(B|C) P(C)
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Probabilistic Independence

Event S: 10% of employees stole.
Event R: There’s a 5% chance of rain tomorrow.
What's the probability an employee stole if it rains tomorrow?

Probably your intuition is that one conveys no information about the other.
What does this mean about the relationship between P(R|S), and P(S)?



Probabilistic Independence

Independent Events

We say that event A is independent of event B if conditioning
on B does not change the probability of A, that is if

P(AIB) = P(A)

Is the independence symmetric?
In other words, if P(A|B) = P(A), is P(B|A) = P(A)?



Probabilistic Independence

If A is independent of B, then P(A| B) = P(A). Is P(B|A)
also equal to P(B)?

Using Bayes' rule, we have
P(A+R)P(B)
P(B|A) = —
I'\.A)

So independence is indeed a symmetric notion



Independence: equivalent statement

If A, B are independent, then their joint probability has a

simple form:
P(A,B) = P(A| B)P(B)

= P(A) - P(B)
This is an equivalent characterization of independence

Independence (version 2)

If A and B are independent events, then

P(An B) = P(A)P(B)



Independence of several events

We can generalize the notion of independence from two
events to more than two.

E.g. A: employee stole; B: rain tomorrow, C: stock price up

Events A4, ..., A,, are independent if for any subsets
Ai,, 0 Ap
J

P (A i Aiy) = P(Ay) - v P(A;)



Independence of several events
If events A, B, C are independent, then
. P(4,B,C) = P(4) - P(B) - P(C)
. P(4,C) =P(A)-P(C)

. P(B,C) = P(B) - P(C)

Rolling a die three times, the probability of sequence (1, 2, 3)?
1/6 x 1/6 x 1/6



Independent vs. Disjoint Events

Many people confuse independence with disjointness.

They are very different!

What do the Venn diagrams look like?

S

Disjoint

Independence: P(B|A) = P(B)



Independent vs. Disjoint Events

If A and B are disjoint, what is P(BBA)?
P(B|A)= PAE) _ o
- P

Disjointness is practically the opposite of independence: if A
occurs, B doesn’t occur

Defining property of independent events:
P(A N B) = P(A)P(B)

Defining property of disjoint events:
P(ANB) =0




Summary

Conditional Probability Summary

I Representing conditional probabilities using contingency
tables, Venn diagrams, and probability trees.

| The chain rule

| Bayes rule

| The law of total probability
I Independent events

I Disjoint events



Probability and Combinatorics



Probability and Combinatorics

Combinatorics (in CSc144) are useful in calculating
probabilities

Permutations

Combinations

Recall: when all outcomes are equally likely:

_ Bl

AT



Permutation number

If selection of k items out of n is done without
replacement, there are

n!

(n —.k)!

nXxXn—-1)Xx---Xxn—-k+1) =

2 Lo
e o'O \A

outcomes };’?

Choose only two




Combination number

If selection of k items out of n is done without
replacement, there are

n! n
-k k! (k)

outcomes ﬁ?

= Choose only two
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