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Review: “probability cheatsheet”

Additivity:
For any finite or countably infinite sequence of disjoint events E,, E,, E, ..., P( g{ E,-) = ; P(E;)
Inclusion-exclusion rule: _
Law of total probability: For events B,, B,, ... that partitions (,
Conditional probability: ( in general)

Probability chain rule:

Law of total probability + Conditional probability:

Bayes'’ rule:

Independence: (definition) A and B are independent if
(property) A and B are independent if and only if (or



Outline

« Random variables

* Distribution functions
* probability mass functions (PMF)
* cumulative distribution function (CDF)






Random variables (RVs)

A single random sample may have more than one characteristic that we
can observe (i.e., it may be bi-/multivariate data).

We can represent each characteristic (e.g., gender, weight, cancer
status, etc.) using a separate random variable.

Random Variable

A random variable connects each possible outcome in the
sample space to some property of interest.

Each value of the random variable (e.g., male or female) has an
associated probability.



Random Variable: Example

Alexandra

Brook

Dharuvika

. X: people -> their genders

Male

Female




Random Variable: Example

. Y: people -> their class year



Random Variable: Example

=

HT

TH }

7

. X: sequence of coin flips -> Number of heads



Types of Random Variables

* Discrete random variable: takes a finite or countable number of
distinct values.

« Continuous random variable: takes an infinite number of values within
a specified range or interval.

Discrete Continuous
Height of males
in a population

i | Pl

6 distinet (Finite) possl'bfe_

Rolling a dice '#

Helfjh‘(, con toke inFinite number

outcomes of continuous real values
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Discrete distributions

When a random variable is discrete, its distribution is characterized by
the probabilities assigned to each distinct value.

The probability that the random variable takes a particular value comes

from the probability associated with the set of individual outcomes that
have that value.

This set is an event

E.g. P(X=Female)




Discrete distributions

How to find P(X = Female)?

Male

Female




Discrete distributions

. How to find P(X = Female)?




Discrete distributions

. What is the distribution of random variable X?

P(X = Female), P(X = Male) X

S

T Male | Female

P(X=z)| 1/4 | 3/4




Discrete distributions

. What is the distribution of random variable X?
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Properties of Discrete Distributions

We can write P(X = x) to mean “The probability that the
random variable X takes the value x".

What must be true of these probabilities?

Properties of Discrete Distributions

1. Each P(X = x) is a probability, so must be between 0 and 1.

2. The P(X = x) must sum to 1 over all possible x values.



Probability Mass function (PMF)

The Probability Mass Function

A discrete random variable, X, can be characterized by its
probability mass function, f (might sometimes write fx if it’s
not clear from context which random variable we're talking
about).

The PMF takes in values of the variable, and returns
probabilities:

f(x) is defined to be P(X = x)



PMF is a table

Think of the PMF as a lookup table.

T Male | Female |

P(X=z) 1/4| 3/4 |

Best way to think of discrete random variables: they take various values,
and each value has a certain probability of happening.



Visualizing discrete distributions: spike plot

Flip two coins at the same time, probability

distribution of number of heads: j |
Often use the spike plot g -
Like a bar plot, but with probabilities, L ?
instead of frequencies or proportions, on 1@ @
the y-axis. g

Number of Heads



The cumulative distribution function (CDF)

Often, we are interested in the probability of falling in some range of
values.

We can use the cumulative distribution function (CDF), which gives the
“accumulated probability” up to a particular value.

The Cumulative Distribution Function

A random variable, X, can be characterized by its cumulative
distribution function, I (or sometimes Fy if we need to be explicit),
which takes values and returns cumulative probabilities:

000 025 0.50 0.75 1.00
| 1 1

F(x) is defined to be P(X £ x) R

Number of Heads



Relating PMF to CDF

How can we calculate F(x) from the PMF table ?
Add up all the probabilities up to and including f(x).
What is the value of F(—0.1) (i.e., P(X < —0.1))? F(1.5)?

F(x)

P PMF ) —

CDF

3/8 o —_

1/8 |
I I 1/8 p——
=

0 1 2 3 =X o 1 1 2 3 x

For discrete random variables, F(x) jumps at locations with
nonzero probability mass



Relating PMF to CDF

. P(x)
So the PMF of X is: FME
(1/8, x=0
~]3/8, x =1 3/8
f)=13/8  x=2
\1/8, x =3 1/8
[]] 1 2
We can write the CDF of X: Loy .
(0, x <0 7 CDF '
%, 0<x<1 |
1 4/8 ——
F(x)=<5, 1<x<?2
%, 2<x<3 1/8—52
\1, x=3



In-class activity

Given by the PMF of X, find the CDF of X.

1/2, x=1
f(x) =< 1/4, x =2

1/4, x =3
Answer:

r0, x <1 0.75}

1

E; 1<x<?2 %0501
F(x) =1 3

- 2<x<3 0.25}

1 X

L1, x =3 0.00}




Relating CDF to PMF

How could we find f(x) from a cumulative distribution function F? e.g., f(2)?

F(x)
1.0, —

718 —

CDF

4/8 —

1/8 p—=

f(2) = F(2) — F(1) =§—§=§
f(2.1) = F(2.1) — F(2) = g —g =0
f(1.5) = F(1.5) —F(1) =2-2=0



Exercise: using CDF and PMF

Given the CDF F:

How to calculate P(X > x)?
PX>x)=1-P(X=<x)=1-F(x)

How about P(X = x)?
PXz2x)=1-P(X <x)=1-(P(X = x) - P(X=x))
1 — F(x) + f(x)
f(x) can be 0 or nonzero, depending on whether
X is a jump

1.0,
7/8

4/8

1/8

F(x)

CDF




Exercise: using CDF and PMF

F(x)

Whatis P(X = 2)?
P(X2x)=1-F(x) + f(x)

f(x) can be 0 or nonzero, depending on

whether x is a jump

Using the formula:

PX22)=1-FQ)+f2Q)=1-2+:

Another way:
PX>2)=PX=2)+P(X=3) =

0 lw

_|_

(el I

1

1

1.0
7/8

4/8

CDF

1/8 p——

3/8

1/8




Exercise: using CDF and PMF

F(x)

Given the CDF F:
How to calculate P(a < X < b)?

How to calculate P(a < X < b)?
(I'll leave this to you as an exercise..)

1.0
7/8

4/8

CDF

1/8 p——




Transformations of random variables

If X is a random variable, then X + 5,3X, X?, ..., are all
random variables

Given any transformation function f, f(X) is a random
variable

How to find the PMF of f(X) based on that of X?
First, find all values f(X) can take
For each value c, try to find P(f(X) = ¢)



Examples

Suppose X has PMF

——

P(X = x) 0.5 0.5

. Whatis the PMF of Y = X + 5?

. Y can take values 6 and 4
P(Y=6)=P(X=1)=0.5
PY=4)=P(X=-1)=0.5



Recap: RV, PMF and CDF

RV: connects all outcomes to a property of interest

A RV has a distribution, which assign a probability to
each distinct value X can take

For discrete RV X:
PMF: f(x) defined as P(X = x)
CDF: F(x) defined as P(X < x)

Derive CDF from PMF, and vice versa
f(x) = F(x) — F(jump just below x)
F(x): the total of all jumps (PMF values) at points less than or
equal to x
PMF of £(X)
First, find all values f(X) can take
For each value c, try to find P(f(X) = ¢)

P(x)

PMF

7/8

4/8

1/8 pP——
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Summarizing random variables

- It is useful to characterize the center and spread of a probability distribution
- “what value do we expect to occur?”, and
- “how confident are we in our prediction?”

Same Means, Same Variance Same Means, Different Variance
0.08
0.06 0.10
0.04
0.05
0.02
0.00 = 0.00 - 3
-10 0 10 20 30 -10 0 10 20 30
Different Means, Same Variance Different Means, Same Variance
0.08 g ...but smaller effect
| 0.08 >
0.06
0.06
0.04 0.04
0.02 0.02
0.00 - ? - 0.00 -

-20 -10 0 10 20 30 -10 0 10 20 30



Mean (aka expectation, expected value)

The mean of a random variable X is also called its expected value.
Usually written as p or E[X].

As with a sample mean, it represents an average over the possible
values; and the average is weighted by the probabilities.
(2+2+1+5)4=25
2 2+ 1"+ 5% a=25

Makes sense if you were to repeat the random process many times, the
average of the observed values of X would approach E[X]. It doesn’t
mean this value will be observed directly—it's a weighted average.



Example: expected winnings at Roulette

38 outcomes (18 red, 18 black, 2 green: 0O,
00) equally likely

Suppose we bet on black. Define X which &S
takes the value 1(%) for outcomes where we ‘%53
win, and —1($) for outcomes where we lose. &

43

Its probability mass function is given by
X -1 1
P(X =1x) | 20/38 | 18/38




Example: expected winnings at Roulette

. XsPMFis . * | 1 | 1
P(X = x) | 20/38 | 18/38

Its expected value is
u=—-1xPX=-1)+1xPX=1)
2

38

expected value : if | play this game thousands of times,
what is my average profit/loss per spin?



Example: expected winnings at Roulette

In general we have:

Expected Value of a Discrete Random Variable

M (aka E(X)) := Z xP(X = x)

x
Summation is over all values X can take

Ex: find the mean of the random variable with PMF
X 0 [ 172
P(X=x)|07]02]01

. Answer:0x0.7+1x02+2x01=04



Expectation formula

Given RV X and its PMF, how to find E[X + 5], E[3X], etc?

ldea 1: find the PMF of the transformed RV and use the
definition of expectation

ldea 2: use the following fact:

Expectation formula

ELFC0] = ) fG) - PX =)



Expectation formula: example

Suppose X has PMF I I I

Find: E[X + 5], E[X?] P(X =)

Expectation formula

ELFCO] = ) f() - P(X =)

X
E[X+5]=(01+5)%x05+(-1+5)%x05=5
E[X?] =1°x 05+ (—-1)?x05=1



Variance

The variance, written o2 or Var(X) or E[(X — n)?] is the
“‘expected squared deviation” from the mean.

It is a weighted average of the squared deviations
corresponding to the individual values.

Variance of a Discrete Random Variable

o? (aka Var(X), aka E((X —p)?) = Y (x — u)*P(X = x)

x

E[(X — u)*] — expectation of (X — u)?, another RV



Example: Roulette

X's PMF is X 1 1
[ P(X = x) | 20/38 | 18/38

2

Its expected value is u = -

Its variance is
0°=(-1-w? - PX=-1D+0-pw?*-PX=1)

(1= () e (1 () =

= ...~ 0.997



Standard deviation

Just as with a sample, the standard deviation, o, is the
square root of the variance.

E.g. in the roulette example, 0 = vV0.997 = 0.998
In one spin, the “typical” variation of our balance is 0.998



Exercise

Find the mean and variance for the random variable with
PMF given by | o T 5
.

P(X=2x)| 070201

Ans:
u=0x074+1x024+2x01=04
g2 =04%x0.74+0.6>x 0.2+ 1.6%x 0.1
= 0.44
For a random variable X, when is its ¢% zero?



Properties of expectation

What will happen to the roulette game |f we bet $2 mstead of $1’?
The new PMF becomes Y, 3
The new expected winnings are then P(X = x) | 20/38 | 18/38

u=-2xPX=-2)+2xPX =2)
4

38

What's the relationship between this value and the old expected
value?

Doubling the individual values (w/o changing probs) doubles the
expected value



Properties of expectation

. This works in general: if we change the values of a random

variable by multiplying by a constant, the expectation gets
multiplied by a constant.

. To see this, recall the expectation formula:

EFCO0] = ) F() - P(X = %)
ElaX] = zaxP(X = X) =asz(X = x) = aE[X]

X X



Properties of expectation

Property ot Expectation

Multiplying a random variable by a constant scales the
expected value by the same constant:

E(aX) = aE(X)

ElaX] -

Sometimes called “linearity of expectation”




Properties of Variance

What will happen to the variance if we multiply every value of
a random variable by a constant a?

This is as if we increase our bet in the roulette game

P(X = x) | 20/38 | 18/38

. Variance = expected squared deviation

. All squared deviations are scaled by a?, making variance also
scaled by a?



Properties of Variance

Its old variance is
0’?=(-1-w* - PX=-1D+1-w?*-PX=1)

(- () <R (- (3) 3

Ilts new variance is
02 =(-2-2w*-PX=-2)+2-2w?* -P(X =2)

=4><(—1—(—%))2x%+4x(1—(_%))2x£

= .. = 4X%X0.997



Properties of Variance

Property of Variance

If the values of a random variable are multiplied by a constant,
a, then the variance gets multiplied by a°.

In other words, Var(aX) = a?Var(X)

How would standard deviation change accordingly?
scaled by |a]| (1)



Properties of Variance

Alternative formula for finding variance
Var(X) = E[X*] — (E[X])?

This sometimes simplifies calculations quite a bit

Example X has PMF | X a1 ] 1
E[X%] =1 | P(X =x) | 20/38 | 18/38
2
E|X] = —

= Var(X) = 1 — (%)2 = 0.997



Example Discrete Random Variables



Uniform distribution over a set

Discrete Uniform PMF

f (x)
More generally, consider S = {v;,v,,...,v5}; X IS
drawn from the uniform distribution of S, then 1 c e e
n [
1 | | L
P(X =k) :{ ~ if k € {vy,v,,..., vy} | I i
0 otherwise ] )
0 a

We denote this by X ~ Uniform(S)
Selecting a student from a class
Drawing a card from a shuffled deck
Choosing a letter from the alphabet




numpy.random
To generate a sample from a uniform discrete distribution,

random.choice(a, size=None, replace=True, p=None)

Generates a random sample from a given 1-D array

numpy.random.choice([2,5,6])
Example output: 2

52



Binomial distribution

Suppose we perform n repeated independent trials, each with success
probability p, what is the distribution of the number of successes X?

What values can X take?
m=20,1,..,n

We have seen that P(X =nm) =
.pM(1 — p)n—m
(m) p"(1-p)

In this case, X is said to be drawn from a binomial distribution, denoted

by
X ~ Bin(n,p)



(Galton Boards

lllustration of binomial distribution
Bead has 10 chances hitting pegs (10
rows of pegs)

each time a peg is hit, bead randomly
bounces to the left or the right with
equal probabilities

Number of times it bounces to the left:
X ~ Bin(10,0.5)



https://en.wikipedia.org/wiki/Galton_board

Binomial distribution

X ~ Bin(n,p)
X 's PMF is “Bell-shaped” :j:"
Facts:

E|IX] =E|n-X;] =n-ElX;] =np

Var[X] = np(1 —p)
Small when p is close to 0 or 1



Bernoulli distribution

What does X ~ Bin(1,p) mean?

——

P(X =x) 1-p P

This is called the Bernoulli distribution with
parameter p, abbreviated as Bernoulli(p)
E[X]==0-(1-p)+1-p=0p

& | MATHEMATIGA




Geometric distribution

Suppose we perform repeated independent trials with success
probability p. What is the distribution of X, the number of trials
needed to get a success? (related to Q4 in HW3)

Applications:

Call center: # calls before encountering first dissatisfied
customer

Basketball: # shots before scoring the first

Networking: # attempts before a successful transmission
Gambling: # plays before first win



Geometric distribution

How to find P(X = x)? WA
Let's draw a probability tree.. /\ |

X=1 \
Example: p = % (roulette) S, v,

X2 /\

PX=1)=p Xfag £
PX=2)=(1-p)p /\
P(X =3)=(1-p)?p R

https://randombooks.org/geometric-distribution.html



Geometric distribution

In conclusion,
PX=x)=p(1—-p)*
forx =1,2, ...

X ~ Geometric(p = 0.3)

Px ()
Fact: I
1
E X _ 2 0.25
[ ] p 0.20

Var[X] — ﬂ 0.15+

p2

Smaller when p closesto1 | ‘ { |
[11.

..........

012345 6 78 910111213 141516 17 18 19 20
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