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Review: “probability cheatsheet” 2

Additivity:

Conditional probability:

Probability chain rule:

Bayes’ rule:

Independence:

Law of total probability + Conditional probability:



Outline

• Random variables

• Distribution functions 

• probability mass functions (PMF)

• cumulative distribution function (CDF)
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Random Variables
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Random variables (RVs)

• A single random sample may have more than one characteristic that we 
can observe (i.e., it may be bi-/multivariate data).

• We can represent each characteristic (e.g., gender, weight, cancer 
status, etc.) using a separate random variable.



Random Variable: Example

• X: people -> their genders



Random Variable: Example

• Y: people -> their class year



Random Variable: Example

• X: sequence of coin flips -> Number of heads



Types of Random Variables

• Discrete random variable: takes a finite or countable number of 
distinct values. 

• Continuous random variable: takes an infinite number of values within 
a specified range or interval.
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Distribution functions
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Discrete distributions

• When a random variable is discrete, its distribution is characterized by 
the probabilities assigned to each distinct value.

• The probability that the random variable takes a particular value comes 
from the probability associated with the set of individual outcomes that 
have that value. 

• This set is an event

• E.g. P(X = Female)



Discrete distributions

• How to find P(X = Female)?



Discrete distributions

• How to find P(X = Female)?



Discrete distributions

• What is the distribution of random variable X?
• P(X = Female), P(X = Male)



Discrete distributions

• What is the distribution of random variable X?

1

4

1

2
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Properties of Discrete Distributions

• We can write P(X = x) to mean “The probability that the 
random variable X takes the value x”.

• What must be true of these probabilities?



Probability Mass function (PMF)



PMF is a table

• Think of the PMF as a lookup table.

• Best way to think of discrete random variables: they take various values, 
and each value has a certain probability of happening.



Visualizing discrete distributions: spike plot

Flip two coins at the same time, probability 
distribution of number of heads:

• Often use the spike plot

• Like a bar plot, but with probabilities, 
instead of frequencies or proportions, on 
the y-axis.



The cumulative distribution function (CDF)

• Often, we are interested in the probability of falling in some range of 
values.

• We can use the cumulative distribution function (CDF), which gives the 
“accumulated probability” up to a particular value.



Relating PMF to CDF

• How can we calculate F(x) from the PMF table f?
• Add up all the probabilities up to and including f(x).

• What is the value of F(−0.1) (i.e., P(X ≤ −0.1))? F(1.5)?

• For discrete random variables, F(x) jumps at locations with 
nonzero probability mass



Relating PMF to CDF

• So the PMF of 𝑋 is:

• We can write the CDF of 𝑋:

f 𝑥 =

1/8, 𝑥 = 0
3/8, 𝑥 = 1
3/8, 𝑥 = 2
1/8, 𝑥 = 3

F 𝑥 =

0, 𝑥 < 0
1

8
, 0 ≤ 𝑥 < 1

1

2
, 1 ≤ 𝑥 < 2

7

8
, 2 ≤ 𝑥 < 3

1, 𝑥 ≥ 3



In-class activity

• Given by the PMF of 𝑋, find the CDF of 𝑋. 

f 𝑥 = ቐ

1/2, 𝑥 = 1
1/4, 𝑥 = 2
1/4, 𝑥 = 3

F 𝑥 =

0, 𝑥 < 1
1

2
, 1 ≤ 𝑥 < 2

3

4
, 2 ≤ 𝑥 < 3

1, 𝑥 ≥ 3

• Answer:



Relating CDF to PMF

• How could we find f(x) from a cumulative distribution function F? e.g., f(2)?

• Focus on “jumps”: f(x) = F(x) – F(jump just below x)

• f 2 = 𝐹 2 − 𝐹 1 =
7

8
−

4

8
=

3

8

• f 2.1 = 𝐹 2.1 − 𝐹 2 =
7

8
−

7

8
= 0

• f 1.5 = 𝐹 1.5 − 𝐹 1 =
4

8
−

4

8
= 0



Exercise: using CDF and PMF

Given the CDF F:

• How to calculate P(X > x)?

• P(X > x) = 1 – P(X ≤ x) = 1 – F(x)

• How about P(X ≥ x)?

• P(X ≥ x) = 1 – P(X < x) = 1 – (P(X ≤ x) – P(X=x))

• 1 – F(x) + f(x)

• f(x) can be 0 or nonzero, depending on whether 
x is a jump



Exercise: using CDF and PMF

• What is 𝑃 𝑋 ≥ 2 ?
• P(X ≥ x) = 1 – F(x) + f(x)

• f(x) can be 0 or nonzero, depending on 
whether x is a jump

Using the formula:

• 𝑃 𝑋 ≥ 2 = 1 − 𝐹 2 + 𝑓 2 = 1 −
7

8
+

3

8
=

1

2

Another way:

• 𝑃 𝑋 ≥ 2 = 𝑃 𝑋 = 2 + 𝑃 𝑋 = 3 =
3

8
+

1

8
=

1

2



Exercise: using CDF and PMF

Given the CDF F:

• How to calculate P(a < X ≤ b)?

= P(X ≤ b) - P(X ≤ a)

= F(b) – F(a)

• How to calculate P(a < X < b)? 
• (I’ll leave this to you as an exercise..)



Transformations of random variables

• If 𝑋 is a random variable, then 𝑋 + 5, 3𝑋, 𝑋2, … , are all 
random variables

• Given any transformation function 𝑓, 𝑓(𝑋) is a random 
variable

• How to find the PMF of 𝑓(𝑋) based on that of 𝑋?
• First, find all values 𝑓(𝑋) can take

• For each value 𝑐, try to find P(𝑓 𝑋 = 𝑐)



Examples

• Suppose X has PMF 

• What is the PMF of Y = X + 5?
• Y can take values 6 and 4

• P(Y = 6) = P(X = 1) = 0.5

• P(Y = 4) = P(X = -1) = 0.5

𝑥 1 -1

𝑃(𝑋 = 𝑥) 0.5 0.5

𝒚 6 4

𝑃(𝑌 = 𝑦) 0.5 0.5



Recap: RV, PMF and CDF

• RV: connects all outcomes to a property of interest

• A RV has a distribution, which assign a probability to 
each distinct value X can take

• For discrete RV X:
• PMF: f 𝑥 defined as P(X = 𝑥)
• CDF: F 𝑥 defined as P X ≤ 𝑥

• Derive CDF from PMF, and vice versa
• f(x) = F(x) – F(jump just below x)

• F(x): the total of all jumps (PMF values) at points less than or 
equal to 𝑥

• PMF of 𝑓(𝑋)
• First, find all values 𝑓(𝑋) can take

• For each value 𝑐, try to find P(𝑓 𝑋 = 𝑐)

Sum to one



Mean and Variance
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Summarizing random variables

• It is useful to characterize the center and spread of a probability distribution

• “what value do we expect to occur?”, and 

• “how confident are we in our prediction?”



Mean (aka expectation, expected value)

• The mean of a random variable 𝑋 is also called its expected value. 
Usually written as 𝜇 or E[𝑋].

• As with a sample mean, it represents an average over the possible 
values; and the average is weighted by the probabilities.

• (2 + 2 + 1 + 5)/4 = 2.5

• 2 * ½ + 1 * ¼ + 5 * ¼ = 2.5

• Makes sense if you were to repeat the random process many times, the 
average of the observed values of 𝑋 would approach E[𝑋]. It doesn’t 
mean this value will be observed directly—it’s a weighted average.



Example: expected winnings at Roulette

• 38 outcomes (18 red, 18 black, 2 green: 0, 
00) equally likely

• Suppose we bet on black. Define X which 
takes the value 1($) for outcomes where we 
win, and −1($) for outcomes where we lose.

• Its probability mass function is given by



Example: expected winnings at Roulette

• X’s PMF is

• Its expected value is 
𝜇 = −1 × 𝑃 𝑋 = −1 + 1 × 𝑃(𝑋 = 1)

= −
2

38

• expected value：if I play this game thousands of times, 
what is my average profit/loss per spin?



Example: expected winnings at Roulette

• In general we have: 

• Ex: find the mean of the random variable with PMF

• Answer: 0 x 0.7 + 1 x 0.2 + 2 x 0.1 = 0.4

Summation is over all values X can take



Expectation formula

• Given RV 𝑋 and its PMF, how to find E[𝑋 + 5], E[3𝑋], etc?

• Idea 1: find the PMF of the transformed RV and use the 
definition of expectation 

• Idea 2: use the following fact: 

Expectation formula 

E 𝑓 𝑋 = ෍

𝑥

𝑓 𝑥 ⋅ 𝑃 𝑋 = 𝑥



Variance

• The variance, written 𝜎2 or Var(𝑋) or E[ 𝑋 − 𝜇 2] is the 
“expected squared deviation” from the mean. 

• It is a weighted average of the squared deviations 
corresponding to the individual values.

• E[ 𝑋 − 𝜇 2] – expectation of 𝑋 − 𝜇 2, another RV



Example: Roulette

• X’s PMF is

• Its expected value is 𝜇 = −
2

38

• Its variance is 
𝜎2 = −1 − 𝜇 2 ⋅ 𝑃 𝑋 = −1 + 1 − 𝜇 2 ⋅ 𝑃(𝑋 = 1)

= −1 − −
2

38

2

×
20

38
+ 1 − −

2

38

2

×
18

38

= … ≈ 0.997



Standard deviation

• Just as with a sample, the standard deviation, 𝜎, is the 
square root of the variance.

• E.g. in the roulette example, 𝜎 = 0.997 ≈ 0.998
• In one spin, the “typical” variation of our balance is 0.998



Properties of expectation

• What will happen to the roulette game if we bet $2 instead of $1?

• The new PMF becomes

• The new expected winnings are then

𝜇 = −2 × 𝑃 𝑋 = −2 + 2 × 𝑃(𝑋 = 2)

= −
4

38

• What’s the relationship between this value and the old expected 
value? 

• Doubling the individual values (w/o changing probs) doubles the 
expected value



Properties of expectation

• This works in general: if we change the values of a random 
variable by multiplying by a constant, the expectation gets 
multiplied by a constant.

• To see this, recall the expectation formula:

E 𝑓 𝑋 = ෍

𝑥

𝑓 𝑥 ⋅ 𝑃 𝑋 = 𝑥

𝐸 𝑎𝑋 = ෍

𝑥

𝑎𝑥 𝑃 𝑋 = 𝑥 = 𝑎෍

𝑥

𝑥 𝑃(𝑋 = 𝑥) = 𝑎𝐸[𝑋]



Properties of expectation

• Sometimes called “linearity of expectation”

𝑎

𝐸[𝑎𝑋]



Properties of Variance

• What will happen to the variance if we multiply every value of 
a random variable by a constant 𝑎?

• This is as if we increase our bet in the roulette game

• Variance = expected squared deviation

• All squared deviations are scaled by 𝑎2, making variance also 
scaled by 𝑎2



Properties of Variance

• Its old variance is 
𝜎2 = −1− 𝜇 2 ⋅ 𝑃 𝑋 = −1 + 1 − 𝜇 2 ⋅ 𝑃(𝑋 = 1)

= −1 − −
2

38

2

×
20

38
+ 1− −

2

38

2

×
18

38

= … ≈ 0.997

• Its new variance is 
𝜎2 = −2− 2𝜇 2 ⋅ 𝑃 𝑋 = −2 + 2 − 2𝜇 2 ⋅ 𝑃(𝑋 = 2)

= 4 × −1 − −
2

38

2

×
20

38
+ 4 × 1 − −

2

38

2

×
18

38

= … ≈ 4 × 0.997



Properties of Variance

• In other words, Var 𝑎𝑋 = 𝑎2Var(𝑋)

• How would standard deviation change accordingly?
• scaled by |𝑎| (!)



Properties of Variance

Alternative formula for finding variance 

Var 𝑋 = E 𝑋2 − E 𝑋 2

This sometimes simplifies calculations quite a bit

Example X has PMF

• E 𝑋2 = 1

• E 𝑋 = −
2

38

• ⇒ Var 𝑋 = 1 −
2

38

2
= 0.997



Example Discrete Random Variables
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Uniform distribution over a set

We denote this by 𝑋 ∼ Uniform(𝑆)

• Selecting a student from a class

• Drawing a card from a shuffled deck

• Choosing a letter from the alphabet 

More generally, consider 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑁}; 𝑋 is 
drawn from the uniform distribution of 𝑆, then

𝑃(𝑋 = 𝑘) =
1

𝑁
if 𝑘 ∈ {𝑣1, 𝑣2, … , 𝑣𝑁}

0 otherwise

Discrete Uniform PMF



numpy.random

To generate a sample from a uniform discrete distribution,

numpy.random.choice([2,5,6])

Example output: 2
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Binomial distribution

• Suppose we perform 𝑛 repeated independent trials, each with success 
probability 𝑝, what is the distribution of the number of successes 𝑋?

• What values can 𝑋 take?
𝑚 = 0,1,… , 𝑛

• We have seen that 𝑃 𝑋 = 𝑚 =
𝑛

𝑚
⋅ 𝑝𝑚(1 − 𝑝)𝑛−𝑚

• In this case, 𝑋 is said to be drawn from a binomial distribution, denoted 
by 

𝑋 ∼ Bin(𝑛, 𝑝)



Galton Boards

• Illustration of binomial distribution

• Bead has 10 chances hitting pegs (10 
rows of pegs)

• each time a peg is hit, bead randomly 
bounces to the left or the right with 
equal probabilities

• Number of times it bounces to the left: 
𝑋 ∼ Bin(10, 0.5)

https://en.wikipedia.org/wiki/Galton_board


Binomial distribution

• 𝑋 ∼ Bin(𝑛, 𝑝)

• 𝑋 ′𝑠 PMF is “Bell-shaped”

Facts:

• E 𝑋 = 𝐸 𝑛 ⋅ 𝑋𝑖 = 𝑛 ⋅ 𝐸 𝑋𝑖 = 𝑛𝑝

• Var 𝑋 = 𝑛𝑝(1 − 𝑝)
• Small when 𝑝 is close to 0 or 1



Bernoulli distribution

• What does 𝑋 ∼ Bin(1, 𝑝) mean?

• This is called the Bernoulli distribution with 

parameter 𝑝, abbreviated as Bernoulli 𝑝

• E 𝑋 = 0 ⋅ 1 − 𝑝 + 1 ⋅ 𝑝 = 𝑝

𝑥 0 1

𝑃(𝑋 = 𝑥) 1-p p



Geometric distribution

• Suppose we perform repeated independent trials with success 
probability 𝑝. What is the distribution of 𝑋, the number of trials 
needed to get a success? (related to Q4 in HW3)

• Applications: 

• Call center: # calls before encountering first dissatisfied 
customer

• Basketball: # shots before scoring the first 

• Networking: # attempts before a successful transmission

• Gambling: # plays before first win



Geometric distribution

• How to find P(𝑋 = 𝑥)?

• Let’s draw a probability tree.. 

• Example: 𝑝 =
1

38
(roulette)

• P 𝑋 = 1 = 𝑝

• P 𝑋 = 2 = 1 − 𝑝 𝑝

• P 𝑋 = 3 = 1 − 𝑝 2 𝑝

• …
https://randombooks.org/geometric-distribution.html

𝑋 = 1

𝑋 = 2

𝑋 = 3



Geometric distribution 

• In conclusion, 
P 𝑋 = 𝑥 = 𝑝 1 − 𝑝 𝑥−1

for 𝑥 = 1,2, …

Fact: 

• E 𝑋 =
1

𝑝

• Var 𝑋 =
1−𝑝

𝑝2

• Smaller when 𝑝 closes to 1


	Slide 1: CSC380: Principles of Data Science
	Slide 2: Review: “probability cheatsheet”
	Slide 3: Outline
	Slide 4: Random Variables
	Slide 5: Random variables (RVs)
	Slide 6: Random Variable: Example
	Slide 7: Random Variable: Example
	Slide 8: Random Variable: Example
	Slide 9: Types of Random Variables
	Slide 10: Distribution functions
	Slide 11: Discrete distributions
	Slide 12: Discrete distributions
	Slide 13: Discrete distributions
	Slide 14: Discrete distributions
	Slide 15: Discrete distributions
	Slide 16: Properties of Discrete Distributions
	Slide 17: Probability Mass function (PMF)
	Slide 18: PMF is a table
	Slide 19: Visualizing discrete distributions: spike plot
	Slide 20: The cumulative distribution function (CDF)
	Slide 21: Relating PMF to CDF
	Slide 22: Relating PMF to CDF
	Slide 23: In-class activity
	Slide 24: Relating CDF to PMF
	Slide 25: Exercise: using CDF and PMF
	Slide 26: Exercise: using CDF and PMF
	Slide 27: Exercise: using CDF and PMF
	Slide 28: Transformations of random variables
	Slide 29: Examples
	Slide 30: Recap: RV, PMF and CDF
	Slide 31: Mean and Variance
	Slide 32: Summarizing random variables
	Slide 33: Mean (aka expectation, expected value)
	Slide 34: Example: expected winnings at Roulette
	Slide 35: Example: expected winnings at Roulette
	Slide 36: Example: expected winnings at Roulette
	Slide 37: Expectation formula
	Slide 38: Variance
	Slide 39: Example: Roulette
	Slide 40: Standard deviation
	Slide 41: Properties of expectation
	Slide 42: Properties of expectation
	Slide 43: Properties of expectation
	Slide 44: Properties of Variance
	Slide 45: Properties of Variance
	Slide 46: Properties of Variance
	Slide 47: Properties of Variance
	Slide 48: Example Discrete Random Variables
	Slide 49: Uniform distribution over a set
	Slide 50: numpy.random
	Slide 51: Binomial distribution
	Slide 52: Galton Boards
	Slide 53: Binomial distribution
	Slide 54: Bernoulli distribution
	Slide 55: Geometric distribution
	Slide 56: Geometric distribution
	Slide 57: Geometric distribution 

